• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 2
  • Tagged with
  • 12
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Neue Ansätze der Energiekostenoptimierung durch produktspezifische Kennzahlen für Lastflexibilisierung und Effizienzsteigerung in der Papierindustrie

Weiß, Uwe 05 October 2018 (has links)
Die Verwendung elektrischer Energie ist ein essenzieller Bestandteil industrieller Prozesse. Aufgrund der aktuellen Bemühungen für eine Energiewende hin zu regenerativen Energien ist es sehr wahrscheinlich, dass die industrielle Bedeutung des elektrischen Stromes weiter zunehmen wird. Damit dabei die Ziele der Roadmap 2050, eine Reduzierung des CO2-Ausstoßes um 80 % bezogen auf 1990, erreichbar bleiben, bedarf es der unausweichlichen Etablierung erneuerbarer Energien. Dies ist kostenintensiv und aufgrund der ungleichmäßigen Energiebereitstellung nicht ohne Probleme für die aufgebauten Netzstrukturen. Der flexible Leistungsbezug (Demand Response) wird aufgrund seines netzdienlichen Charakters als ein Schlüssel zur Netzstabilisierung und direkten Energiekostenreduzierung gesehen. Jedoch trägt die energieintensive Papierindustrie mit ihren Papiermaschinen bislang keinen bedeutenden Teil zu diesem Ansatz bei und profitiert demnach auch nicht von den finanziellen Vorteilen. Eine Ursache dafür ist, dass dieser Branche auf Grundlage der bisherigen Be-wertungsmethoden kaum wirtschaftliche Potentiale für einen flexiblen Lastbezug zugespro-chen werden. Ein wesentlicher Teil der vorliegenden Arbeit widmet sich der Entwicklung eigner, den Be-dürfnissen der Papierindustrie angepassten, Erhebungs-, Bewertungs- sowie angeschlosse-nen Vermarktungsmethoden für eine Energiekostenreduzierung auf der Grundlage flexibler Lasten. Für die Kostenoptimierung stehen unterschiedliche Möglichkeiten, wie die in der vor-liegenden Arbeit betrachtete Regelleistungsvermarktung, zur Verfügung. Die Ergebnisse eines sortenspezifischen Analyseansatzes von Prozess- und Energieein-satzkennzahlen zeigen, dass von der Papierindustrie ein größeres Mitwirken am Regelleis-tungsmarkt zu erwarten sein kann, als es bisher angenommen wurde. Die erkannten Poten-tiale zur Lastflexibilisierung sind jedoch nicht jederzeit verfügbar. Damit diese Verfügbarkeit nicht überschritten wird, müssen die Mechanismen, die zum Regellastabruf führen, verstan-den und deren Einfluss auf einen Lastabruf genutzt werden. Zu diesem Zweck wurde im Zuge der Arbeit die Grenzlast eingeführt. Die Grenzlast kennzeichnet die Regellasthöhe, welche aus statistischer Sicht nicht öfter abgerufen wird, als es die Verfügbarkeit zulässt. Es wird belegt, dass auch von der Papierindustrie eine Beteiligung am Regelenergiemarkt möglich ist und die Energiekosten auf diese Weise reduzierbar wären, ohne den Fokus auf das Kerngeschäft zu verlieren.:I. Abbildungsverzeichnis II. Tabellenverzeichnis III. Formelverzeichnis IV. Abkürzungen, Formelzeichen V. Thesenübersicht 1 Einleitung und Motivation 1.1 Zielstellung und Aufbau der Arbeit 1.1.1 Ziele der Untersuchungen 1.1.2 Abgrenzung zu verfügbaren Software-Lösungen 1.2 Energieoptimierung – Sichtweisen und Definitionen 1.3 Energiepolitik und umweltpolitische Forderungen 1.3.1 Roadmap 2050 1.3.2 Zieldreieck 1.3.3 Flexible Lasten und der zukünftige Energiemarkt 2 Theoretische Grundlagen 2.1 Key Perfomance Indicator - Schlüsselfaktoren 2.2 Kennzahlen der Papierindustrie 2.3 Energiesystem in Deutschland 2.3.1 Energiepreise – Preisbildung 2.4 Netzregulierung – Regelleistung 2.5 Charakterisierung von Regelleistungsarten 2.5.1 Datenaufbereitung des Regelleistungseinsatzes 2.5.2 Minutenreserve 2.5.3 Sekundärreserve 2.6 Demand Response 2.6.1 Demand Response - Definition 2.6.2 Demand Response – Speicher 2.6.3 Finanzielle Auswirkungen von Demand Response 3 Methodik – Entwicklung und Durchführung 3.1 Ableitung konkreter Arbeitsaufgaben 3.2 Erhebung sortenspezifischer Kennzahlen 3.2.1 Sortenspezifische Kennwertberechnung 3.2.2 For-Schleife 3.2.3 Anwendungssoftware 3.2.4 Überführung produktspezifischer Kennzahlen in den Produktionsplan 3.3 Potentialerhebung flexibler Lasten 3.3.1 Potentialermittlung nach Klobasa 3.3.2 Diskussion der Klobasa Methode im Kontext weiterer Methoden 3.4 Analyse der Auktionsergebnisse von Regelleistung 3.5 Ermittlung und Einflussnahme auf die Abrufdauer von Regelleistung 3.5.1 Grenzlastprognose 3.5.2 Entwicklung der Preisstruktur zur Energiekostenoptimierung 3.6 Eignungsbewertung der ermittelten Regelleistungspotentiale 4 Anwendung grundlegender Erkenntnisse und Methoden 4.1 Reservelastpotential durch Änderung des Dampfbezuges 4.1.1 Ermittlung der Potentialhöhe 4.1.2 Qualitätsbewertung der potentiellen Reserveleistung 4.1.3 Ermittlung der Potentialverfügbarkeit 4.1.4 Herleitung und Bewertung des Arbeitspreises 4.1.5 Herleitung und Bewertung des Leistungspreises 4.1.6 Bestimmung der Energiekostenoptimierung 4.2 Reservelastpotential durch Änderung der Antriebslast - Ausblick 4.2.1 Qualitätsbewertung – sortenspezifische Betrachtung der Antriebslast 5 Effizienzsteigerung durch sortenspezifische Kennwerte 5.1 Energieoptimierungssystem 5.1.1 Zielwerterhebung im Energie Optimierungs System (EOS) 5.1.2 Funktionsweise des EOS 6 Zusammenfassung VI. Literaturverzeichnis VII. Anhang
12

Dynamic stability control and human energetics

Ekizos, Antonis 13 November 2018 (has links)
Die Bewegungs-kontrollstrategien kontextabhängig und abhängig von unterschiedlichen Kriterien ausgewählt werden. Einerseits ist die Stabilität in den Bewegungszuständen wie der Fortbewegung ausschlaggebend für die ungestörte Ausführung bestimmter Handlungen und erfordert eine effektive Steuerung durch das zentrale Nervensystem. Andererseits wird die Bewegungsstrategieauswahl durch das zentrale Nervensystem dadurch bestimmt, dass die Energiekosten minimiert werden soll. Beide Konzepte (d.h. die Aufrechterhaltung der Stabilität und die Energiekostenminimierung) spielen eine fundamentale Rolle bei der Frage, warum sich Menschen so bewegen, wie sie es tun. Unklar ist dabei allerdings, auf welche Weise das zentrale Nervensystem beide Prinzipien gegeneinander gewichtet. In den letzten 20 Jahren haben uns wissenschaftliche Konzepte wie die Chaostheorie oder die Theorie komplexer Systeme eine neue Herangehensweise an diese Fragen ermöglicht. Diese Arbeit untersucht die dynamische Stabilität menschlicher Fortbewegung mit Hilfe des Konzepts der Ljapunowanalyse. Als erstes wird eine methodologische Untersuchung der Verlässlichkeit des maximalen Ljapunowexponenten beim Gehen und Laufen durchgeführt (Kapitel 2). Danach wird verglichen zwischen dem Laufen unter normalen Umständen und dem darauffolgenden Laufen ohne Schuhe, wobei letzteres eine Abnahme der Stabilität nach dem Übergang zu den neuen Umständen zur Folge hat (Kapitel 3). In der letzten Untersuchung wurde ein unterschiedlich langes Training zur Verbesserung der Laufenergetik durchgeführt, in einer Gruppe nur über einen kurzen und in einer anderen Gruppe über einen etwas längeren Zeitraum (Kapitel 4). Die Ergebnisse zeigen, dass Bewegungskontrollfehler für die Energiekosten beim Laufen eine Rolle spielen können, und legen somit eine flexible Priorisierung der Bewegungskontrolle nahe. / Motor control strategies are chosen in a context dependent manner, based on different criteria. On the one hand stability in dynamic conditions such as locomotion, is crucial to uninterrupted task execution and requires effective regulation by the central nervous system. On the other, minimization of the energetic cost of transport is instrumental in choosing the locomotion strategy by the central nervous system. Both these concepts, (i.e. maintaining stability and optimization of energetic cost of locomotion) have a fundamental role on how and why humans move in the way they do. However, how the human central nervous system prioritizes between the different goals is unknown. In the last 20 years, ideas from scientific paradigms such as chaos theory and complex systems have given us novel tools to approach these questions. The current thesis examines the dynamic stability during human locomotion under such an approach using the concept of Lyapunov analysis. At first a methodological examination of the reliability of the maximum Lyapunov exponent in walking and running has been conducted (chapter 2). Afterwards, an examination between the habitual running condition and after removal of footwear was conducted, exhibiting a decrease in stability following the acute transition to the new condition (chapter 3). In the last study, a training intervention aiming at improvements in running energetics was performed using a short-term and a long-term intervention group (chapter 4). The results evidence that motor control errors can have a role in the energy cost of running and thus, a flexible prioritization of the motor control output.

Page generated in 0.0728 seconds