• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 249
  • 48
  • 45
  • 39
  • 26
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 569
  • 569
  • 129
  • 122
  • 98
  • 97
  • 78
  • 71
  • 69
  • 56
  • 56
  • 55
  • 54
  • 50
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Development of vibration-based multi-resonance energy harvesters using piezoelectric materials

Xiong, Xingyu January 2014 (has links)
The development of self-powered wireless sensor networks for structural and machinery health monitoring has attracted considerable attention in the research field during the last decade. Since the low-duty-cycle wireless sensor networks have significantly reduced the power requirements to the range of tens to hundreds of microwatts, it is possible to harvest environmental energy as the power supply instead of using batteries. Vibration energy harvesting using piezoelectric materials has become the most popular technique, which has a good potential to generate adequate power. However, there is a limitation for the conventional beam-shaped harvester designs in real applications due to their limited bandwidth. In order to overcome this limitation, the essential objective of this thesis is to develop harvesters with multi-resonance structures. The multi-resonance harvester with good broadband performance can achieve close resonance frequencies and relatively large power output in each vibration mode. The main tasks and contributions of this thesis are summarised as follows: • A parametric analysis is presented to determine how the modal structural and electromechanical performances of cantilevered beam harvesters are affected by two modal factors designated as mass ratio and electromechanical coupling coefficient (EMCC). The modal performance of using rectangular, convergent and divergent tapered configurations with and without extra masses are systematically analysed by geometric variation using the finite element analysis (FEA) software ABAQUS. • A modal approach using the two modal factors to evaluate the modal performance of harvesters is introduced and a configurational optimization strategy based on the modal approach is developed to pre-select the configurations of multi-resonance harvesters with better modal structural performance and close resonance frequencies in multiple modes. Using this optimization strategy obviates the need to run the full analysis at the first stage. • A novel two-layer stacked harvester, which consists of a base cantilevered beam that is connected to an upper beam by a rigid mass, is developed. By altering the dimensions and the locations of the masses, the two-layer harvester can generate two close resonance frequencies with relatively large power output. The effects of using rectangular, convergent and divergent tapered beam configurations are systematically analysed. • Multi-layer stacked harvesters with up to five layers are developed. The three-layer harvesters with different mass positions, which can generate three close resonance frequencies, are optimized using the configurational optimization strategy. • A novel doubly-clamped multi-layer harvester, which is able to generate five close resonance frequencies with relatively large power output, is developed and thoroughly analysed. • An experimental study of the multi-layer stacked harvester is presented to validate the simulated results and the configurational optimization strategy. • An experimental study of the two-layer stacked harvester using high performance single crystal piezoelectric material PIMNT is presented. The harvester using PIMNT can generate nearly 10 times larger power output and 3.5 times wider bandwidth than using PZT. Besides, by modifying the location of the piezoelectric layer, anti-resonances between two adjacent modes can be eliminated.
72

Piezoelectric vibration energy harvesting and its application to vibration control

Rafique, Sajid January 2012 (has links)
Vibration-based energy harvesting using piezoelectric materials have been investigated by several research groups with the aim of harvesting maximum energy and providing power to low-powered wireless electronic systems for their entire operational life. The electromechanical coupling effect introduced by the piezoelectric vibration energy harvesting (PVEH) mechanism presents modelling challenges. For this reason, there has been a continuous effort to develop different modelling techniques to describe the PVEH mechanism and its effects on the dynamics of the system. The overall aims of this thesis are twofold: (1) a thorough theoretical and experimental analysis of a PVEH beam or assembly of beams; (2) an in-depth analytical and experimental investigation of the novel concept of a dual function piezoelectric vibration energy harvester beam/tuned vibration absorber (PVEH/TVA) or 'electromechanical TVA' and its potential application to vibration control. The salient novel contributions of this thesis can be summarised as follows: (i) An in-depth experimental validation of a PVEH beam model based on the analytical modal analysis method (AMAM), with the investigations conducted over a wider frequency range than previously tested. (ii) The precise identification of the electrical loads that harvest maximum power and that induce maximum electrical damping. (iii) A thorough investigation of the influence of mechanical damping on PVEH beams. (iv) A procedure for the exact modelling of PVEH beams, and assemblies of such beams, using the dynamic stiffness matrix (DSM) method. (v) A procedure to enhance the power output from a PVEH beam through the application of a tip rotational restraint and the use of segmented electrodes. (vi) The theoretical basis for the novel concept of a dual function PVEH beam/TVA, and its realisation and experimental validation for a prototype device. A thorough experimental validation of a cantilever piezoelectric bimorph energy harvester without a tip mass is presented under random excitation. The study provided a deep insight into the effect of PVEH on the dynamics of the system for variations in electrical load. An alternative modelling technique to AMAM, based on the DSM, is introduced for PVEH beams. Unlike AMAM, the DSM is exact, since it is based on the exact solution to the bending wave equation. It also readily lends itself to the modelling of beams with different boundary conditions or assemblies of beams of different crosssections. AMAM is shown to converge to DSM if a sufficiency of modes is used. Finally, an in-depth theoretical and experimental investigation of a prototype PVEHbeam/TVA device is presented. This device comprises a pair of bimorphs shunted by R-L-C circuitry and can be used as a tuned mass damper (TMD) to attenuate a vibration mode of a generic structure. The optimal damping required by this TMD is generated by the PVEH effect of the bimorphs. Such a device combines the advantages of conventional mechanical and electrical TVAs, overcoming their relative disadvantages. The results demonstrate that the ideal degree of attenuation can be achieved by the proposed device through appropriate tuning of the circuitry, thereby presenting the prospect of a novel class of 'electromechanical' tuned vibration absorbers.
73

Energy Harvesting from the Human Body for Wearable and Mobile Devices

Liu, Mingyi 08 July 2020 (has links)
Wearable and mobile devices are an important part of our daily life. Most of those devices are powered by batteries. The limited life span of batteries constitutes a limitation, especially in a multiple-day expedition, where electrical power can not access conveniently. At the same time, there is a huge amount of energy stored in the human body. While walking, there is a large amount of power dissipated in the human body as negative muscle work and the energy loss by impact. By sourcing locally and using locally, human body energy harvesting is a promising solution. This dissertation focuses on harvesting energy from the human body to power wearable and mobile devices while poses a minimum burden on the human body. Three topics related to the human body energy harvesting are explored, i.e, energy harvesting backpack, negative muscle work harvester, and energy harvesting tile/paver. The energy harvesting backpack was invented in 2006. Extensive work was done to improve the performance of backpack energy harvester. The backpack is modeled as a spring-mass-damper system. Mechanical Motion Rectifier was added to the spring-mass-damper system to increase the frequency bandwidth. A spring is added to the spring-mass-damper system, between the harvester and the backpack mass, and a inerter-based 2DOF (degree-of-freedom) backpack is created. The inerter-based 2DOF backpack improves the power output, frequency bandwidth, and power stroke ratio performance. MMR was added to the inerter-based 2DOF backpack to reduce the peak stroke. Compared with the conventional spring-mass-damper backpack, the MMR and inerter-based 2DOF backpack can harvest more power with large bandwidth at a small sacrifice of stroke. The electric damping was also tuned to increase the power output and bandwidth for the energy harvesting backpack. The negative work harvester mounts on the human ankle and harvests energy in the terminal stance phase in human walking, when the calf muscle is doing negative muscle work. This harvester is an analogy to regenerative brake in vehicles. The energy harvesting paver/tile harvests energy when the heel contacts with ground and energy are dissipated by impact. / Doctor of Philosophy / Wearable and mobile devices are an important part of our daily life. Most of those devices are powered by batteries. The limited life span of batteries constitutes a limitation, especially in a multiple-day expedition, where electrical power can not access conveniently. At the same time, there is a huge amount of energy stored in the human body. While walking, there is a large amount of power dissipated in the human body as negative muscle work and the energy loss by impact. By sourcing locally and using locally, human body energy harvesting is a promising solution. This dissertation focuses on harvesting energy from the human body to power wearable and mobile devices while poses a minimum burden on the human body. Three topics related to the human body energy harvesting are explored, i.e, energy harvesting backpack, negative muscle work harvester, and energy harvesting tile/paver. The energy harvesting backpack was invented in 2006. Extensive work was done to improve the performance of backpack energy harvester. The backpack is modeled as a spring-mass-damper system. Extensive work have been done to make the energy harvesting backpack broad frequency bandwidth. The negative work harvester mounts on the human ankle and harvests energy in the terminal stance phase in human walking. This harvester is an analogy to regenerative brake in vehicles. The energy harvesting paver/tile harvests energy when the heel contacts with ground and energy are dissipated by impact.
74

Energy Harvesting Wireless Sensor Networks : Performance Evaluation And Trade-offs

Rao, Shilpa Dinkar January 2016 (has links) (PDF)
Wireless sensor networks(WSNs) have a diverse set of applications such as military surveillance, health and environmental monitoring, and home automation. Sensor nodes are equipped with pre-charged batteries, which drain out when the nodes sense, process, and communicate data. Eventually, the nodes of the WSN die and the network dies. Energy harvesting(EH) is a green alternative to solve the limited lifetime problem in WSNs. EH nodes recharge their batteries by harvesting ambient energy such as solar, wind, and radio energy. However, due to the randomness in the EH process and the limited amounts of energy that can be harvested, the EH nodes are often intermittently available. Therefore, even though EH nodes live perpetually, they do not cater to the network continuously. We focus on the energy-efficient design of WSNs that incorporate EH, and investigate the new design trade-offs that arise in exploiting the potentially scarce and random energy arrivals and channel fading encountered by the network. To this end, firstly, we compare the performance of conventional, all-EH, and hybrid WSNs, which consist of both conventional and EH nodes. We then study max function computation, which aims at energy-efficient data aggregation, in EH WSNs. We first argue that the conventional performance criteria used for evaluating WSNs, which are motivated by lifetime, and for evaluating EH networks are at odds with each other and are unsuitable for evaluating hybrid WSNs. We propose two new and insightful performance criteria called the k-outage and n-transmission durations to evaluate and compare different WSNs. These criteria capture the effect of the battery energies of the nodes and the channel fading conditions on the network operations. We prove two computationally-efficient bounds for evaluating these criteria, and show their use in a cost-constrained deployment of a WSN involving EH nodes. Next, we study the estimation of maximum of sensor readings in an all-EH WSN. We analyze the mean absolute error(MAE) in estimating the maximum reading when a random subset of the EH nodes periodically transmit their readings to the fusion node. We determine the optimal transmit power and the number of scheduled nodes that minimize the MAE. We weigh the benefits of the availability of channel information at the nodes against the cost of acquiring it. The results are first developed assuming that the readings are transmitted with infinite resolution. The new trade-offs that arise when quantized readings are instead transmitted are then characterized.Our results hold for any distribution of sensor readings, and for any stationary and ergodic EH process.
75

Design of vibrational and solar energy harvesting systems for powering wireless sensor networks in bridge structural health monitoring applications

Adams, Jacob Allan 03 February 2015 (has links)
Structural health monitoring systems provide a promising route to real-time data for analyzing the current state of large structures. In the wake of two high-profile bridge collapses due to an aging highway infrastructure, the interest in implementing such systems into fracture-critical and structurally deficient bridges is greater now than at any point in history. Traditionally, these technologies have not been cost-effective as bridges lack existing wiring architecture and the addition of this is cost prohibitive. Modern wireless sensor networks (WSN) now present a viable alternative to traditional networking; however, these systems must incorporate localized power sources capable of decade-long operation with minimal maintenance. To this end, this thesis explores the development of two energy harvesting systems capable of long-term bridge deployment with minimal maintenance. First, an electromagnetic, linear, vibrational energy harvester is explored that utilizes the excitations from passing traffic to induce motion in a translating permanent magnet mass. This motion is then converted to electrical energy using Faraday’s law of induction. This thesis presents a review of vibrational energy harvesting literature before detailing the process of designing, simulating, prototyping, and testing a selected design. Included is an analysis of the effects of frequency, excitation amplitude, load, and damping on the power production potential of the harvester. Second, a solar energy harvester using photovoltaic (PV) panels is explored for powering the critical gateway component of the WSN responsible for data aggregation. As solar energy harvesting is a more mature technology, this thesis focuses on the methodologies for properly sizing a solar harvesting system and experimentally validating the selected design. Fabrication of the prototype system was completed and field testing was performed in Austin, TX. The results validate the selected system’s ability to power the necessary 14 W DC load with a 0° panel azimuth angle (facing direct south) and 45° tilt. / text
76

Wireless Communication Using Energy Harvesting Push Button

Bergman, Kevin, Amgård, Erik January 2016 (has links)
A disadvantage with battery powered circuits is the fact that the battery sometimes can run out of power. If a button that can generate energy by applying mechanical work to it was applied instead of batteries, is it possible to enable a transmitter to stay active long enough to transmit data which can later by received and decoded? This thesis contains a study, in which how to effectively send data wirelessly between a transmitter and receiver module, without the use of any batteries or external power sources, only an energy harvesting push button is constructed and evaluated. There will also be a theoretical comparison between different transmission formats and which is more suitable for a task such as this.
77

EtherLux, a low power wireless display

Hocker, Andrew Edward 17 September 2010 (has links)
Real time information is essential in many businesses and as a method to inform employees and consumers, so that they can make informed decisions. In offices, warehouse and stores it can be advantageous to have tens to hundreds of smaller displays to deliver a variety of information. This paper details the design, implementation and testing of a wireless low power solar powered display system as a solution to deliver real time information. The system uses an Organic LCD to maintain an image for years on no power and uses very little power to update and refresh the display. The system uses off- the-shelf components to achieve multiple updates per day and, with the right lighting conditions, can perform up to one refresh per minute. The system is entirely powered by incandescent light, has a built in radio, and utilizes capacitors to store charge and deliver power, removing the need for rechargeable batteries. The wireless signal works at 2.4GHz and uses the low power 802.15.4 protocol to send and receive data at a range of 75 feet. It has no observable issue operating in environments with 2.4GHz wireless signals, such as 802.11g. The whole system can be built for under $75.00, and takes up an area of 6" x 8" including the photovoltaic cells. / text
78

Simulation Study of Tremor Suppression and Experiment of Energy Harvesting with Piezoelectric Materials

Ou, Jianqiang 08 1900 (has links)
The objective of this research is to develop a wearable device that could harvest waste mechanical energy of the human hand movement and utilize this energy to suppress wrist tremors. Piezoelectric material is used to measure the hand movement signals, and the signal of wrist tremor is filtered to be utilized to suppress the tremor. In order to conduct the experiment of energy harvesting and tremor suppression, an experimental rig was fabricated. Two types of piezoelectric materials, PVDF (polyvinylidene fluoride) films and MFC (macro fiber composite) films, are used to harvest mechanical energy and used as actuators to suppress hand tremors. However, due to some shortages of the materials, these two types of materials are not used as actuators to suppress the wrist tremors. Thus, we use Matlab Simulink to simulate the tremor suppression with AVC (active vibration control) algorithm.
79

Sistemas eletroquímicos foto-assistidos para conversão e armazenamento de energia, e dessalinização / Photo-assisted electrochemical systems for energy conversion and storage, and desalination

Morais, William Gomes de 04 May 2018 (has links)
O desenvolvimento de fontes alternativas de energia, com o intuito de diminuir a poluição gerada pela queima de combustíveis fósseis, tem estimulado cientistas a procurar novos meios de converter e armazenar energia. Adicionalmente, mudanças climáticas e o crescimento populacional têm gerado uma preocupação crescente com relação à escassez de água. Atualmente, cerca de 3% do consumo global de energia elétrica é referente ao tratamento de águas residuais oriundas de zonas urbanas. A humanidade precisa encontrar meios de usar água limpa e potável de forma mais eficiente. O armazenamento de energia durante o tratamento de águas residuais pode encorajar a preservação ambiental, e desta forma, contribuir para um crescimento mais sustentável, pois pode tornar-se rentável para as indústrias que geram e tratam estes resíduos. Uma estratégia é a utilização de gradientes iônicos e, então, convertê-los em energia elétrica. Pesquisas têm sido realizadas com sistemas contendo soluções eletrolíticas, com diferentes concentrações, e utilizando ciclos eletroquímicos para produzir trabalho elétrico. Neste contexto, são propostos sistemas eletroquímicos, chamados máquinas ácido-base foto-assistidas, que possibilitam a conversão, e o armazenamento, de energia elétrica durante a neutralização de soluções ácidas mediante irradiação de luz UV. Configurações alternativas destes dispositivos permitem, também, a dessalinização de soluções salinas com a possibilidade de recuperar parte da energia utilizada no procedimento. O princípio operacional destes sistemas baseia-se na variação entrópica, oriunda da mudança nas atividades de prótons e íons alcalinos, como também, na conversão de energia eletromagnética em energia elétrica. Através de experimentos de prova de conceito, foi possível obter 108 kJ por mol de íon eletroinserido, valor que corresponde a 10,8 kJ dm-3 de solução ácida neutralizada. / The development of alternative energy sources to mitigate the pollution generated by fossil fuel combustion has stimulated the search for new ways to convert and to harvest energy. Climate change, pollution, and population growth have raised concern about water scarcity. Nowadays, about 3% of the global electricity is consumed by municipal wastewater treatment plants. Humankind has to find the means to use clean and potable water more effectively. One strategy to harvest energy is to employ an ionic gradient and then convert it into electrical energy. Researchers have recently tested systems that apply electrolytic solutions containing different salt concentrations to deliver work after electrochemical cycles. Energy harvesting during wastewater treatment should encourage environmental preservation and contribute to sustainable growth. In this context, electrochemical systems are proposed, so-called photo-assisted acid-base machines, which promote energy conversion and harvesting during acidic solution neutralization under UV irradiation. Also, alternative configurations of these systems allow the desalination of salt solutions with regain of part of the used energy. Operating principle of these machines is based upon entropic variation, associated with proton and alkali ion activity changes, and in the conversion of the electromagnetic energy into electrical energy. Proof-of-concept experiments provided 108 kJ per mol of electroinserted ion, which corresponds to 10.8 kJ dm-3 of neutralized acid solution.
80

Carbon-based nanomaterials for solar energy harvesting and storage devices towards integrated power platform

Chien, Chih-Tao January 2015 (has links)
No description available.

Page generated in 0.0885 seconds