• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 275
  • 49
  • 43
  • 25
  • 20
  • 12
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 547
  • 547
  • 111
  • 106
  • 85
  • 66
  • 60
  • 56
  • 50
  • 48
  • 46
  • 46
  • 44
  • 43
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Characterization Of Composite Broad Band Absorbing Conjugated Polymer Nanoparticles Using Steady-state, Time-resolve And Single Particle Spectroscopy

Bonner, Maxwell Scotland 01 January 2011 (has links)
As the global economy searches for reliable, inexpensive and environmentally friendly renewable energy resources, energy conservation by means of photovoltaics has seen near exponential growth in the last decade. Compared to state-of-the-art inorganic solar cells, organic photovoltaics (OPVs) composed of conjugated polymers are particularly interesting because of their processability, flexibility and the potential for large area devices at a reduced fabrication cost. It has been extensively documented that the interchain and intrachain interactions of conjugated polymers complicate the fundamental understanding of the optical and electronic properties in the solid-state (i.e. thin film active layer). These interactions are highly dependent on the nanoscale morphology of the solid-state material, leading to a heterogeneous morphology where individual conjugated polymer molecules obtain a variety of different optoelectronic properties. Therefore, it is of the utmost importance to fundamentally study conjugated polymer systems at the single molecule or nanoparticle level instead of the complex macroscopic bulk level. This dissertation research aims to develop simplified nanoparticle models that are representation of the nanodomains found in the solid-state material, while fundamentally addressing light harvesting, energy transfer and interfacial charge transfer mechanisms and their relationship to the electronic structure, material composition and morphology of the nanoparticle system. In preceding work, monofunctional doped nanoparticles (polymer-polymer) were fabricated with enhanced light harvesting and Fӧrster energy transfer properties by blending Poly[(o-phenylenevinylene)-alt-(2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene)] (BPPV) and Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) at various MEHPPV doping ratios. While single particle spectroscopy (SPS) reveals a broad distribution of v optoelectronic and photophysical properties, time-correlated single photon counting (TC-SPC) spectroscopy displays multiple fluorescence lifetime components for each nanoparticle composition, resulting from changing polymer chain morphologies and polymer-polymer aggregation. In addition, difunctional doped nanoparticles were fabricated by doping the monofunctional doped nanoparticles with PC60BM ([6,6]-phenyl-C61-butyric acid methyl ester) to investigate competition between intermolecular energy transfer and interfacial charge transfer. Specifically, the difunctional SPS data illustrated enhanced and reduced energy transfer mechanisms that are dependent on the material composition of MEH-PPV and PC60BM. These data are indicative of changes in inter- and intrachain interactions of BPPV and MEH-PPV and their respective nanoscale morphologies. Together, these fundamental studies provide a thorough understanding of monofunctional and difunctional doped nanoparticle photophysics, necessary for understanding the morphological, optoelectronic and photophysical processes that can limit the efficiency of OPVs and provide insight for strategies aimed at improving device efficiencies.
282

Two-photon 3d Optical Data Storage Via Fluorescence Modulation Of Fluorene Dyes By Photochromic Diarylethenes

Corredor, Claudia 01 January 2007 (has links)
Three-dimensional (3D) optical data storage based on two-photon processes provides highly confined excitation in a recording medium and a mechanism for writing and reading data with less cross talk between multiple memory layers, due to the quadratic dependence of two photon absorption (2PA) on the incident light intensity. The capacity for highly confined excitation and intrinsic 3D resolution affords immense information storage capacity (up to 1012 bits/cm3). Recently, the use of photochromic materials for 3D memory has received intense interest because of several major advantages over current optical systems, including their erasable/rewritable capability, high resolution, and high sensitivity. This work demonstrates a novel two-photon 3D optical storage system based on the modulation of the fluorescence emission of a highly efficient two-photon absorbing fluorescent dye (fluorene derivative) and a photochromic compound (diarylethene). The feasibility of using efficient intermolecular Förster Resonance Energy Transfer (RET) from the non-covalently linked two-photon absorbing fluorescent fluorene derivative to the photochromic diarylethene as a novel read-out method in a two-photon optical data storage system was explored. For the purpose of the development of this novel two-photon 3D optical storage system, linear and two-photon spectroscopic characterization of commercial diarylethenes in solution and in a polymer film and evidence of their cyclization (O→C) and cycloreversion (C→O) reactions induced by two-photon excitation were undertaken. For the development of a readout method, Resonance Energy Transfer (RET) from twophoton absorbing fluorene derivatives to photochromic compounds was investigated under one and two-photon excitation. The Förster's distances and critical acceptor concentrations were determined for non-bound donor-acceptor pairs in homogeneous molecular ensembles. To the best of my knowledge, modulation of the two-photon fluorescence emission of a dye by a photochromic diarylethene has not been reported as a mechanism to read the recorded information in a 3D optical data storage system. This system was demonstrated to be highly stable and suitable for recording data in thick storage media. The proposed RET-based readout method proved to be non-destructive (exhibiting a loss of the initial fluorescence emission less than 20% of the initial emission after 10,000 readout cycles). Potential application of this system in a rewritable-erasable optical data storage system was proved. As part of the strategy for the development of diarylethenes optimized for 3D optical data storage, derivatives containing Ï€-conjugated fluorene molecules were synthesized and characterized. The final part of this reasearch demonstrated the photostability of fluorine derivatives showing strong molecular polarizability and high fluorescence quantum yields. These compounds are quite promising for application in RET-based two-photon 3D optical data storage. Hence, the photostability of these fluorene derivatives is a key parameter to establish, and facilitates their full utility in critical applications.
283

Ultrafast Photoinduced Energy and Electron Transfer Studies in Closely Bound Molecular and Nanocarbon Donor-Acceptor Systems

Gobeze, Habtom Berhane 08 1900 (has links)
As part of the study, photosynthetic system constructs based on BF2-chelated dipyrromethene (BODIPY), BF2-chelated azadipyrromethene (AzaBODIPY), porphyrin, phthalocyanine, oxasmaragdyrin, polythiophene, fullerene (C60), single-walled carbon nanotube and graphene are investigated. Antenna systems of BODIPY dyads and oligomers having BODIPY as an excitation energy donor connected to different acceptors including BODIPY, azaBODIPY, oxasmaragdyrin and aluminum porphyrin are studied. Different synthetic methodologies are used to afford donor-acceptor systems either directly linked with no spacer or with short spacers of varying length and orientation. The effect of donor orientation, donor optical gap as well as nature of donor-acceptor coupling on the donor-acceptor spectral overlap and hence the rate of excitation energy transfer is investigated. In all these systems, an ultrafast energy transfer followed by electron transfer is observed. In particular, in a directly connected BODIPY-azaBODIPY dyad an unusually ultrafast energy transfer (~ 150−200 f) via Förster mechanism is observed. The observation of energy transfer via Förster instead of Dexter mechanism in such closely coupled donor-acceptor systems shows the balance between spatial and electronic coupling achieved in the donor-acceptor system. Moreover, in donor-acceptor systems involving semiconducting 1D and 2D materials, covalently functionalized single-walled carbon nanotubes via charge stabilizing (TPA)3ZnP and noncovalently hybridized exfoliated graphene via polythiophene chromophores are studied for their charge transportation functions. In both cases, not only an ultrafast charge transfer in the range of (~ 2−5 p) is observed but also the charge-separated states were long lived implying the potential of these functionalized materials as efficient charge transporting substrates with organic chromophores for photovoltaic and optoelectronic applications where ultrafast intercomponent charge transfer is vital. In addition, as a final part of this dissertation, the mechanisms of electron injection and back electron transfer in heterogeneous systems involving supramolecularly anchored high potential chromophores on TiO2 film are studied by femtosecond transient absorption spectroscopy. In this study, not only are important insights gained on the utilization of supramolecular anchoring of chromophores such as porphyrins, phthalocyanines, and their perflorinated high potential analogues, chromophores currently showing promise as highly efficient sensitizers in dye sensitized solar cells, on TiO2 film but also on the effect of anchor length and sensitizer orientation on the rates of electron injection and back electron transfer at the sensitizer-TiO2 interface.
284

Förster Resonance Energy Transfer in PbS Films

Leopold, Matthew 02 October 2014 (has links)
No description available.
285

Investigation of Energy Transfer, Quantification, and Localization of Peptides and Proteins by Fluorescence Spectroscopy and Mass Spectrometry

Saraswat, Suraj 24 September 2012 (has links)
No description available.
286

Investigations of the Electronic Structure and Excited State Processes of Tansition Metal Complexes with Polypyridyl and Schiff Base Ligans

Ball, Pamilla J. January 2005 (has links)
No description available.
287

Electronic to Vibrational Energy Transfer from Cl* (3 <sup>2</sup>P<sub>1/2</sub>) to N<sub>2</sub>O(ν<sub>1</sub>): Failure of a Simple Kinetic Mechanism

Brumfield, Brian 05 December 2005 (has links)
No description available.
288

Electronic to Vibrational Energy Transfer from Cl<sup>*</sup> (<sup>2</sup>P<sub>1/2</sub>) to CH<sub>4</sub> and CD<sub>4</sub>

Munson, Brian R. 15 May 2009 (has links)
No description available.
289

CARS Measurements of Vibrational Energy Transfer in Nanosecond Pulse Electric Discharges in Nitrogen, Air, and Their Mixtures with Carbon Dioxide

Hung, Yi-chen, Hung 28 December 2016 (has links)
No description available.
290

Reducing Threshold of Biexciton Formation in Semiconductor Nanocrystals through Their Self-Assembly into Nano-Antennae

Emara, Mahmoud M. 18 July 2008 (has links)
No description available.

Page generated in 0.0843 seconds