Spelling suggestions: "subject:"energyefficient computing"" "subject:"energyinefficient computing""
41 |
Energy-Efficient In-Memory Database ComputingLehner, Wolfgang January 2013 (has links)
The efficient and flexible management of large datasets is one of the core requirements of modern business applications. Having access to consistent and up-to-date information is the foundation for operational, tactical, and strategic decision making. Within the last few years, the database community sparked a large number of extremely innovative research projects to push the envelope in the context of modern database system architectures. In this paper, we outline requirements and influencing factors to identify some of the hot research topics in database management systems. We argue that—even after 30 years of active database research—the time is right to rethink some of the core architectural principles and come up with novel approaches to meet the requirements of the next decades in data management. The sheer number of diverse and novel (e.g., scientific) application areas, the existence of modern hardware capabilities, and the need of large data centers to become more energy-efficient will be the drivers for database research in the years to come.
|
42 |
Wireless Interconnect for Board and Chip LevelFettweis, Gerhard P., ul Hassan, Najeeb, Landau, Lukas, Fischer, Erik January 2013 (has links)
Electronic systems of the future require a very high bandwidth communications infrastructure within the system. This way the massive amount of compute power which will be available can be inter-connected to realize future powerful advanced electronic systems. Today, electronic inter-connects between 3D chip-stacks, as well as intra-connects within 3D chip-stacks are approaching data rates of 100 Gbit/s soon. Hence, the question to be answered is how to efficiently design the communications infrastructure which will be within electronic systems. Within this paper approaches and results for building this infrastructure for future electronics are addressed.
|
43 |
Waiting for Locks: How Long Does It Usually Take?Baier, Christel, Daum, Marcus, Engel, Benjamin, Härtig, Hermann, Klein, Joachim, Klüppelholz, Sascha, Märcker, Steffen, Tews, Hendrik, Völp, Marcus January 2012 (has links)
Reliability of low-level operating-system (OS) code is an indispensable requirement. This includes functional properties from the safety-liveness spectrum, but also quantitative properties stating, e.g., that the average waiting time on locks is sufficiently small or that the energy requirement of a certain system call is below a given threshold with a high probability. This paper reports on our experiences made in a running project where the goal is to apply probabilistic model checking techniques and to align the results of the model checker with measurements to predict quantitative properties of low-level OS code.
|
44 |
Chiefly Symmetric: Results on the Scalability of Probabilistic Model Checking for Operating-System CodeBaier, Christel, Daum, Marcus, Engel, Benjamin, Härtig, Hermann, Klein, Joachim, Klüppelholz, Sascha, Märcker, Steffen, Tews, Hendrik, Völp, Marcus January 2012 (has links)
Reliability in terms of functional properties from the safety-liveness spectrum is an indispensable requirement of low-level operating-system (OS) code. However, with evermore complex and thus less predictable hardware, quantitative and probabilistic guarantees become more and more important. Probabilistic model checking is one technique to automatically obtain these guarantees. First experiences with the automated quantitative analysis of low-level operating-system code confirm the expectation that the naive probabilistic model checking approach rapidly reaches its limits when increasing the numbers of processes. This paper reports on our work-in-progress to tackle the state explosion problem for low-level OS-code caused by the exponential blow-up of the model size when the number of processes grows. We studied the symmetry reduction approach and carried out our experiments with a simple test-and-test-and-set lock case study as a representative example for a wide range of protocols with natural inter-process dependencies and long-run properties. We quickly see a state-space explosion for scenarios where inter-process dependencies are insignificant. However, once inter-process dependencies dominate the picture models with hundred and more processes can be constructed and analysed.
|
45 |
Secure degrees of freedom on widely linear instantaneous relay-assisted interference channelHo, Zuleita K.-M., Jorswieck, Eduard January 2013 (has links)
The number of secure data streams a relay-assisted interference channel can support has been an intriguing problem. The problem is not solved even for a fundamental scenario with a single antenna at each transmitter, receiver and relay. In this paper, we study the achievable secure degrees of freedom of instantaneous relay-assisted interference channels with real and complex coefficients. The study of secure degrees of freedom with complex coefficients is not a trivial multiuser extension of the scenarios with real channel coefficients as in the case for the degrees of freedom, due to secrecy constraints. We tackle this challenge by jointly designing the improper transmit signals and widely-linear relay processing strategies.
|
46 |
Interference Leakage Neutralization in Two-Hop Wiretap Channels with Partial CSIEngelmann, Sabrina, Ho, Zuleita K.-M., Jorswieck, Eduard A. January 2013 (has links)
In this paper, we analyze the four-node relay wiretap channel, where the relay performs amplify-and-forward. There is no direct link between transmitter and receiver available. The transmitter has multiple antennas, which assist in securing the transmission over both phases. In case of full channel state information (CSI), the transmitter can apply information leakage neutralization in order to prevent the eavesdropper from obtaining any information about the signal sent. This gets more challenging, if the transmitter has only an outdated estimate of the channel from the relay to the eavesdropper. For this case, we optimize the worst case secrecy rate by choosing intelligently the beamforming vectors and the power allocation at the transmitter and the relay.
|
47 |
HAEC NewsJanuary 2013 (has links)
No description available.
|
48 |
HAEC News06 September 2013 (has links) (PDF)
No description available.
|
49 |
HAEC News06 September 2013 (has links) (PDF)
No description available.
|
50 |
Non-regenerative Two-Hop Wiretap Channels using Interference NeutralizationGerbracht, Sabrina, Jorswieck, Eduard A., Zheng, Gan, Ottersten, Björn 23 May 2013 (has links) (PDF)
In this paper, we analyze the achievable secrecy rates in the two-hop wiretap channel with four nodes, where the transmitter and the receiver have multiple antennas while the relay and the eavesdropper have only a single antenna each. The relay is operating in amplify-and-forward mode and all the channels between the nodes are known perfectly by the transmitter. We discuss different transmission and protection schemes like artificial noise (AN). Furthermore, we introduce interference neutralization (IN) as a new protection scheme. We compare the different schemes regarding the high-SNR slope and the high-SNR power offset and illustrate the performance by simulation results. It is shown analytically as well as by numerical simulations that the high SNR performance of the proposed IN scheme is better than the one of AN.
|
Page generated in 0.0814 seconds