• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical generation of mm-wave signals for use in broadband radio over fiber systems

González Insua, Ignacio 28 September 2010 (has links) (PDF)
In future cellular radio networks Radio over Fiber (RoF) is a very attractive technology to deliver microwave and millimeter-wave signals containing broad band multimedia services to numerous base stations of the network. The radio signals are placed on an optical carrier and distributed by means of an optical fiber network to the base stations (BS). In the BS the optical signals heterodyne in a photodiode to produce the radio signals which are then sent via a wireless link to the mobile units (MU). The optical fiber network provides high frequency, wideband, low loss and a means of signal distribution immune to electromagnetic interference. In this thesis, different methods of electrooptical upconversion were investigated. The generation of an optical double-sideband with suppressed carrier (DSB-SC) signal is a straightforward method due to the fact that only one optical modulator driven at half the millimeter-wave frequency is required. One or both sidebands were ASK-modulated with baseband data rates of up to 10 Gbps. Optical single sideband modulation proves to be dispersion resilient as error free transmission was demonstrated after 53 km of single mode fiber transmission for data rates up to 10 Gbps. Wireless links up to 7 m were also demonstrated, proving the feasibility of this approach for broadband wireless inhouse access systems. / Für zukünftige zellulare Funknetze ist „Radio over Fiber (RoF)“ eine sehr attraktive Technologie, um breitbandige Multimedia-Dienste mit Mikro- und Millimeterwellen zu übertragen. Die Funksignale werden dabei auf eine optische Trägerwelle aufmoduliert und mittels eines optischen Fasernetzes zu den Basisstationen (BS) verteilt. In den BS erfolgt die Überlagung der optischen Signale durch eine Fotodiode, um die Funksignale zu erzeugen. Diese werden dann über eine drahtlose Verbindung zu den beweglichen Multimedia-Endgeräten geschickt. Vorteile des optischen Fasernetzes sind Breitbandigkeit, geringe Dämpfung und eine gegenüber elektromagnetischen Störungen immune Signalverteilung. In dieser Arbeit werden verschiedene Methoden der elektrooptischen Aufwärtskonversion erforscht und die wichtigsten Eigenschaften dieser untersucht. Die Erzeugung eines optischen Zweiseitenbandsignales mit unterdrücktem Träger (DSB-SC) ist eine einfache Methode, da nur ein optischer Modulator, betrieben mit der halben elektrischen Trägerfrequenz, benötigt wird. Eine oder beide Seitenbänder konnten mit Bitraten bis zu 10 Gbps amplitudenmoduliert werden. Optische Einseitenbandmodulation ist extrem tolerant bezüglich der chromatischen Dispersion der Faser, wie die fehlerfreie Übertragung nach 53 km Glasfaser beweist. Drahtlose Links bis zu 7 m wurden realisiert und zeigen die Möglichkeit dieser Verfahren für breitbandige drahtlose Inhouse-Zugangssysteme.
2

Game Theory and Microeconomic Theory for Beamforming Design in Multiple-Input Single-Output Interference Channels

Mochaourab, Rami 24 July 2012 (has links) (PDF)
In interference-limited wireless networks, interference management techniques are important in order to improve the performance of the systems. Given that spectrum and energy are scarce resources in these networks, techniques that exploit the resources efficiently are desired. We consider a set of base stations operating concurrently in the same spectral band. Each base station is equipped with multiple antennas and transmits data to a single-antenna mobile user. This setting corresponds to the multiple-input single-output (MISO) interference channel (IFC). The receivers are assumed to treat interference signals as noise. Moreover, each transmitter is assumed to know the channels between itself and all receivers perfectly. We study the conflict between the transmitter-receiver pairs (links) using models from game theory and microeconomic theory. These models provide solutions to resource allocation problems which in our case correspond to the joint beamforming design at the transmitters. Our interest lies in solutions that are Pareto optimal. Pareto optimality ensures that it is not further possible to improve the performance of any link without reducing the performance of another link. Strategic games in game theory determine the noncooperative choice of strategies of the players. The outcome of a strategic game is a Nash equilibrium. While the Nash equilibrium in the MISO IFC is generally not efficient, we characterize the necessary null-shaping constraints on the strategy space of each transmitter such that the Nash equilibrium outcome is Pareto optimal. An arbitrator is involved in this setting which dictates the constraints at each transmitter. In contrast to strategic games, coalitional games provide cooperative solutions between the players. We study cooperation between the links via coalitional games without transferable utility. Cooperative beamforming schemes considered are either zero forcing transmission or Wiener filter precoding. We characterize the necessary and sufficient conditions under which the core of the coalitional game with zero forcing transmission is not empty. The core solution concept specifies the strategies with which all players have the incentive to cooperate jointly in a grand coalition. While the core only considers the formation of the grand coalition, coalition formation games study coalition dynamics. We utilize a coalition formation algorithm, called merge-and-split, to determine stable link grouping. Numerical results show that while in the low signal-to-noise ratio (SNR) regime noncooperation between the links is efficient, at high SNR all links benefit in forming a grand coalition. Coalition formation shows its significance in the mid SNR regime where subset link cooperation provides joint performance gains. We use the models of exchange and competitive market from microeconomic theory to determine Pareto optimal equilibria in the two-user MISO IFC. In the exchange model, the links are represented as consumers that can trade goods within themselves. The goods in our setting correspond to the parameters of the beamforming vectors necessary to achieve all Pareto optimal points in the utility region. We utilize the conflict representation of the consumers in the Edgeworth box, a graphical tool that depicts the allocation of the goods for the two consumers, to provide closed-form solution to all Pareto optimal outcomes. The exchange equilibria are a subset of the points on the Pareto boundary at which both consumers achieve larger utility then at the Nash equilibrium. We propose a decentralized bargaining process between the consumers which starts at the Nash equilibrium and ends at an outcome arbitrarily close to an exchange equilibrium. The design of the bargaining process relies on a systematic study of the allocations in the Edgeworth box. In comparison to the exchange model, a competitive market additionally defines prices for the goods. The equilibrium in this economy is called Walrasian and corresponds to the prices that equate the demand to the supply of goods. We calculate the unique Walrasian equilibrium and propose a coordination process that is realized by the arbitrator which distributes the Walrasian prices to the consumers. The consumers then calculate in a decentralized manner their optimal demand corresponding to beamforming vectors that achieve the Walrasian equilibrium. This outcome is Pareto optimal and lies in the set of exchange equilibria. In this thesis, based on the game theoretic and microeconomic models, efficient beamforming strategies are proposed that jointly improve the performance of the systems. The gained results are applicable in interference-limited wireless networks requiring either coordination from the arbitrator or direct cooperation between the transmitters.
3

Signalakquisition in DS-Spreizspektrum-Systemen und ihre Anwendung auf den 3GPP-FDD-Mobilfunkstandard

Zoch, André 03 November 2004 (has links) (PDF)
Robust signal acquisition is an important task in DS-SS receivers. The objective of the acquisition is to coarsely estimate the signal parameters such that the succeeding parameter tracking algorithms can be initialized. In particular, acquisition is needed to coarsely synchronize the receiver to the timing and frequency of the received signal. For this purpose mainly data aided and feedforward algorithms are applied. Using the maximum likelihood (ML) criterion, an estimator for the joint estimation of receive timing and frequency offset can be derived which determines the maximum of the Likelihood function over the whole parameter uncertainty region. Due to its high complexity the ML synchronizer is difficult to implement for practical applications. Hence, complexity reduced algorithms need to be derived. This thesis gives a systematic survey of acquisition algorithms and of performance analysis methods for analyzing such algorithms under mobile radio propagation conditions. The exploitation of multiple observations is investigated in order to improve the acquisition performance in terms of false alarm rate and acquisition time. In particular, optimal and suboptimal combining schemes for a fixed observation interval as well as sequential utilization of successive observations resulting in a variable observation length are analyzed. Another possibility to make the signal acquisition more efficient in terms of the acquisition time is to use multi stage acquisition algorithms. One class of those algorithms are the well known multiple dwell algorithms. A different approach is to design acquisition procedures in which the information about the unknown parameters is distributed among several stages such that each stage has to cope with a smaller uncertainty region in comparison to the overall parameter uncertainty. Analysis of multi stage algorithms followed by an extensive discussion of the 3GPP FDD downlink acquisition procedure as an example of a multi stage procedure with distributed information conclude the work. / Die zuverlässige Signalakquisition, die auch als Grobsynchronisation bezeichnet wird, stellt eine wichtige Aufgabe in DS-SS-Systemen dar. Das Ziel hierbei ist es, Schätzwerte fur die Übertragungsparameter derart zu bestimmen, dass die der Grobsynchronisation nachfolgende Feinsynchronisation initialisiert werden kann, d. h. dass die bestimmten Schätzwerte innerhalb des Fangbereiches der Feinsynchronisationsalgorithmen liegen. Insbesondere ist es für die Bestimmung von Synchronisationszeitpunkt und Frequenzversatz sinnvoll, eine Grobsynchronisation durchzuführen. Im Interesse einer begrenzten Komplexität sowie einer möglichst schnellen Akquisition finden vor allem datengestützte und vorwärtsverarbeitende Algorithmen Anwendung. Ausgehend vom Maximum-Likelihood-Kriterium (ML-Kriterium) können geeignete Schätzer für die gemeinsame Bestimmung von Synchronisationszeitpunkt und Frequenzversatz abgeleitet werden. Dabei ist das Maximum der Likelihood-Funktion innerhalb der Parameterunsicherheitsregion zu bestimmen. Aufgrund seiner hohen Komplexität ist der ML-Schatzer fur die Akquisition wenig geeignet; vielmehr müssen aufwandsgünstige Algorithmen mit ausreichender Leistungsfähigkeit gefunden werden. In dieser Arbeit werden verschiedene Algorithmen zur Parameterakquisition systematisierend gegenübergestellt. Weiterführend sind Verfahren zur Verbesserung des Akquisitionsverhaltens bezüglich Fehlalarm-Wahrscheinlichkeit und Akquisitionszeit unter Ausnutzung mehrfacher Beobachtung Gegenstand der Betrachtungen. Insbesondere optimale und suboptimale Verfahren mit fester Beobachtungsdauer sowie die sequentielle Auswertung aufeinander folgender Beobachtungen, bei der sich die Beobachtungsdauer nach der erreichten Entscheidungssicherheit bestimmt, werden analysiert. Als eine weitere Möglichkeit, die Signalakquisition in Bezug auf die Akquisitionszeit effizienter zu gestalten, werden mehrstufige Akquisitionsverfahren diskutiert. Es werden zum einen die häufig genutzten Mehrfach-Dwell-Algorithmen sowie mehrstufige Algorithmen mit verteilter Information betrachtet. Bei Letzteren Algorithmen wird jeder Akquisitionsstufe ein Teil der zur Synchronisation benötigten Information zugeordnet, wodurch sich die Parameter-Unsicherheit für jede einzelne Stufe verringert. Ziel hierbei ist es, durch Erhöhung der Entscheidungssicherheit der einzelnen Stufen die mittlere Akquisitionszeit zu reduzieren. Die Diskussion und die Analyse von mehrstufigen Akquisitionsverfahren bilden den Abschluss der Arbeit, wobei besonders auf die 3GPP-FDD Downlink-Akquisition als ein Beispiel fur mehrstufige Verfahren mit verteilter Information eingegangen wird.
4

Non-regenerative Two-Hop Wiretap Channels using Interference Neutralization

Gerbracht, Sabrina, Jorswieck, Eduard A., Zheng, Gan, Ottersten, Björn 23 May 2013 (has links) (PDF)
In this paper, we analyze the achievable secrecy rates in the two-hop wiretap channel with four nodes, where the transmitter and the receiver have multiple antennas while the relay and the eavesdropper have only a single antenna each. The relay is operating in amplify-and-forward mode and all the channels between the nodes are known perfectly by the transmitter. We discuss different transmission and protection schemes like artificial noise (AN). Furthermore, we introduce interference neutralization (IN) as a new protection scheme. We compare the different schemes regarding the high-SNR slope and the high-SNR power offset and illustrate the performance by simulation results. It is shown analytically as well as by numerical simulations that the high SNR performance of the proposed IN scheme is better than the one of AN.
5

Resource Allocation for Multiple-Input and Multiple-Output Interference Networks

Cao, Pan 11 March 2015 (has links) (PDF)
To meet the exponentially increasing traffic data driven by the rapidly growing mobile subscriptions, both industry and academia are exploring the potential of a new genera- tion (5G) of wireless technologies. An important 5G goal is to achieve high data rate. Small cells with spectrum sharing and multiple-input multiple-output (MIMO) techniques are one of the most promising 5G technologies, since it enables to increase the aggregate data rate by improving the spectral efficiency, nodes density and transmission bandwidth, respectively. However, the increased interference in the densified networks will in return limit the achievable rate performance if not properly managed. The considered setup can be modeled as MIMO interference networks, which can be classified into the K-user MIMO interference channel (IC) and the K-cell MIMO interfering broadcast channel/multiple access channel (MIMO-IBC/IMAC) according to the number of mobile stations (MSs) simultaneously served by each base station (BS). The thesis considers two physical layer (PHY) resource allocation problems that deal with the interference for both models: 1) Pareto boundary computation for the achiev- able rate region in a K-user single-stream MIMO IC and 2) grouping-based interference alignment (GIA) with optimized IA-Cell assignment in a MIMO-IMAC under limited feedback. In each problem, the thesis seeks to provide a deeper understanding of the system and novel mathematical results, along with supporting numerical examples. Some of the main contributions can be summarized as follows. It is an open problem to compute the Pareto boundary of the achievable rate region for a K-user single-stream MIMO IC. The K-user single-stream MIMO IC models multiple transmitter-receiver pairs which operate over the same spectrum simultaneously. Each transmitter and each receiver is equipped with multiple antennas, and a single desired data stream is communicated in each transmitter-receiver link. The individual achievable rates of the K users form a K-dimensional achievable rate region. To find efficient operating points in the achievable rate region, the Pareto boundary computation problem, which can be formulated as a multi-objective optimization problem, needs to be solved. The thesis transforms the multi-objective optimization problem to two single-objective optimization problems–single constraint rate maximization problem and alternating rate profile optimization problem, based on the formulations of the ε-constraint optimization and the weighted Chebyshev optimization, respectively. The thesis proposes two alternating optimization algorithms to solve both single-objective optimization problems. The convergence of both algorithms is guaranteed. Also, a heuristic initialization scheme is provided for each algorithm to achieve a high-quality solution. By varying the weights in each single-objective optimization problem, numerical results show that both algorithms provide an inner bound very close to the Pareto boundary. Furthermore, the thesis also computes some key points exactly on the Pareto boundary in closed-form. A framework for interference alignment (IA) under limited feedback is proposed for a MIMO-IMAC. The MIMO-IMAC well matches the uplink scenario in cellular system, where multiple cells share their spectrum and operate simultaneously. In each cell, a BS receives the desired signals from multiple MSs within its own cell and each BS and each MS is equipped with multi-antenna. By allowing the inter-cell coordination, the thesis develops a distributed IA framework under limited feedback from three aspects: the GIA, the IA-Cell assignment and dynamic feedback bit allocation (DBA), respec- tively. Firstly, the thesis provides a complete study along with some new improvements of the GIA, which enables to compute the exact IA precoders in closed-form, based on local channel state information at the receiver (CSIR). Secondly, the concept of IA-Cell assignment is introduced and its effect on the achievable rate and degrees of freedom (DoF) performance is analyzed. Two distributed matching approaches and one centralized assignment approach are proposed to find a good IA-Cell assignment in three scenrios with different backhaul overhead. Thirdly, under limited feedback, the thesis derives an upper bound of the residual interference to noise ratio (RINR), formulates and solves a corresponding DBA problem. Finally, numerical results show that the proposed GIA with optimized IA-Cell assignment and the DBA greatly outperforms the traditional GIA algorithm.
6

Systemanalyse und Entwicklung Six-Port basierter Funkempfängerarchitekturen unter Berücksichtigung analoger Störeffekte

Mailand, Marko 09 January 2008 (has links) (PDF)
Due to the increasing demand of broadband capability and reconfigurability for mobile applications, there is an enormous interest to develop appropriate analog receiver front-ends. In this respect, one promising candidate group is the Six-Port-based direct conversion receiver. The presented work focuses on the investigation of Six-Port-based mobile receiver front-ends with their specific systematical signal processing. Thereby, issues of spurious interfering signals which are generated within the down conversion process of such receivers are of special interest. Based on a comprehensive description of the analog signal processing within additive frequency conversion, a reason could be identified why existing Six-Port receivers have not found any practical application in mobile communication yet – the dynamic DC-offset. With this insight compensation techniques were developed to overcome the negative influences of the dynamic DC-offset. Furthermore, this work presents novel Six-Port-based receiver architectures which, on the one hand, keep the advantages of additive mixing systems like: low power consumption, broadband capability and simplicity of implementation especially for mm-wave transmissions. On the other hand, these novel architectures comprise compensation techniques such that systematically generated spurious signals are inherently compensated in the analog part of the receiver. Moreover, the influence of impairments of phase and amplitude within the IQ-branches of a receiver was investigated. The resulting, unwanted IQ-imbalance was shown to be a mixing method (multiplicative or additive) independent spurious effect. It is suggested to compensate for IQ-imbalance in the digital part of the receiver system. This can be realized with the use of adaptive algorithms. The comparison with conventional analog receiver architectures (especially homodyne receivers) with respect to the reception of today’s and future digitally modulated transmission signals indicate the proposed Six-Port-based receiver architectures to be suitable candidates to fulfill the difficult tasks of modern mobile communication.

Page generated in 0.0143 seconds