1 |
Communautés virtuelles de marque : vers une définition unifiée et premières contributions à la mesure de la performance / Virtual brand communities : towards a unified definition and first contributions to the measurement of performanceMorgat, Pierre 27 June 2017 (has links)
L’avènement des communautés virtuelles de marque (VBC) bouleverse les relations avec les consommateurs et pousse les annonceurs à adopter une véritable Orientation Clients. Or, la littérature a mis en exergue certains avantages induits sans pour autant offrir une analyse holistique des bénéfices et impacts des plateformes d’engagement communautaires. Tel est donc l’objet de cette recherche qui tente d’apporter une première modélisation des bénéfices qualitatifs et quantitatifs des VBC. Le cadre théorique de notre recherche s’inscrit dans celui des théories relationnelles et de l’engagement des consommateurs. L’exploration conceptuelle de la littérature nous a permis de mieux appréhender les enjeux des VBC pour le champ du comportement du consommateur et le management du Marketing, avant de dresser une typologie des bénéfices induits. Aussi, compte tenu du faible nombre de VBC et de l’aspect stratégique de notre problématique, nous avons opté pour des entretiens semi-directifs avec des experts ou Dirigeants Marketing. Cette recherche hypothético-déductive nous a permis de mettre en lumière des catégories de bénéfices, avec notamment les impacts sur la Connaissance Clients, la Relation Clients, l’innovation participative, le crowd sourcing ou encore la gouvernance et le management. La phase exploratoire a validé les propositions de recherche avec des nuances récurrentes, notamment pour ce qui est de la représentativité relative des membres. Les principaux apports de cette recherche sont la mise en avant des facteurs d’optimisation de l’engagement des membres au sein des VBC, ainsi que l’impact sur le retour sur investissement. Ce travail ouvre de nouvelles perspectives de recherche du fait de son aspect pluridisciplinaire et des enjeux pour le management du Marketing, de la Relation Clients et des marques. / The advent of Virtual Brand Communities (VBC) is changing customer relationships and pushing advertisers to adopt a true Customer Driven Strategy. The literature has highlighted some of the benefits that have been gained, without providing a holistic analysis of the benefits and impacts of community engagement platforms. It is therefore the object of this research that attempts to provide a first modelization of the qualitative and quantitative benefits of VBC. The theoretical framework of our research is in line with relational theories and consumer engagement. The conceptual exploration of literature allowed us to better understand the stakes of the VBCs for the field of consumer behavior and marketing management, before drawing up a typology of the profits induced. Also, given the low number of VBCs and the strategic aspect of our research, we have opted for semi-directive interviews with experts or marketing executives. This hypothetico deductive research has allowed us to highlight families of benefits, with impacts on Customer Knowledge, Customer Relationship, participative innovation, crowd sourcing, governance and management. The exploratory phase validated the research proposals with recurring nuances, in particular with regard to the relative representativeness of the members. The main contributions of this research are the optimization of the factors of member’s engagement within the VBC, as well as the impact on the return on investment. This work opens new research perspectives, because of its multidisciplinary aspect and the stakes for Marketing management, Customer Relations and brands.
|
2 |
Multi-Class Emotion Classification for Interactive Presentations : A case study on how emotional sentiment analysis can help end users better convey intended emotionAndersson, Charlotte January 2022 (has links)
Mentimeter is one of the fastest-growing startups in Sweden. They are an audience engagement platform that allows users to create interactive presentations and engage an audience. As online information spreads increasingly faster, methods of analyzing, understanding, and categorizing information are developing and improving rapidly. Natural Language Processing (NLP) is the ability to break down input, for instance, text or audio, and process it using technologies such as computational linguistics and statistical learning, machine learning, and deep learning models. This thesis aimed to investigate if a tool that applies multi-class emotion classification of text could benefit end users when they are creating presentations using Mentimeter. A case study was conducted where a pre-trained BERT base model that had been fine-tuned and trained to the GoEmotions data set was applied as a tool to Mentimeter’s presentation software and then evaluated by end users. The results found that the tool was accurate; however, overall was not helpful for end users. For future research, improvements such as including emotions/tones that are more related to presentations would make the tool more applicable to presentations and would be helpful according to end users. / Mentimeter är en av Sveriges snabbast växande startupbolag som erbjuder en tjänst där användare kan skapa interaktiva presenationer och engagera sin publik. Medan infomration online sprids allt snabbare utvecklas och förbättras metoder för att kunna analysera, förstå och kategorisera information. Natural Language Processing (NLP) är förmågan att kunna bryta ner indata, som text och ljud, och processera det med hjälp av teknologier som datalingvistik och statistisk inlärnings, maskininlärnings, och djupinlärnings modeller. Syftet med denna uppsats var att undersöka om ett verktyg som applicerar multi-class emotion classification med text skulle gynna användare när de skapar presentation med Mentimeter. En fallstudie utfördes där en förtränad BERT modell som hade finjusterats och tränats på GoEmotions dataset applicerades som ett verktyg på Mentimeters programvara som användare sen fick utvärdera. Resultaten visar att verktyget var motsvarande men övergripande fann användarna att verktyget inte var hjälpsamt. För framtida forskning skulle förbättringar av verktyget som att använda känslor/toner som är mer relterade till presentationer göra verktyget mer hjälpsamt enligt användare.
|
Page generated in 0.0771 seconds