1 |
Development of a Hollow-Core Fiberoptic Microneedle Device for the Treatment of Invasive Bladder CancerHood, Robert L. 12 September 2011 (has links)
The hydraulic resistance characterization manuscript chronicles the early development of the hollow-core fiberoptic microneedle device (FMD). The study determined that for straight tubing with an inner bore of 150 ?m and a length greater than 50 mm long, Poiseuille's Law was shown to be accurate within 12% of experimental data for the pressure range of 69-517 kPa. Comparison between different needle design geometries indicated that tip diameters <55 ?m cause a significant increase in hydraulic resistance. Tubing length should be kept to a minimum and tip diameter should be kept above this threshold to reduce overall hydraulic resistance.
The bladder treatment study describes the fabrication and testing of the FMD for treatment of invasive urothelial cell carcinomas (UCCs). Experiments investigating the fluid dispersal of single-walled carbon nanohorns (SWNHs) in the wall of inflated, healthy ex vivo bladders demonstrated that perfusion of 2 cm° on the bladder wall's surface can be achieved with a 5 minute infusion at 50 ?L/min. Irradiation of the SWNH perfused bladder wall tissue with a free space, 1064 nm laser at an irradiance of 0.95 W/cm° for 40 seconds yielded a 480% temperature increase relative to similar irradiation of a non-infused control. Co-delivery experiments demonstrated both SWNH and light delivery though a single hollow-core fiber to heat the bladder wall 33 °C with an irradiance of 400 W/cm°, demonstrating that the FMD can be used to achieve hyperthermia-based therapeutic effects via interstitial irradiation. / Master of Science
|
2 |
Dopant behavior in complex semiconductor systemsKong, Ning 21 June 2010 (has links)
As the size of modern transistors is continuously scaled down, challenges rise in almost every component of a silicon device. Formation of ultra shallow junction (USJ) with high activation level is particularly important for suppressing short channel effects. However, the formation of low resistance USJ is made difficult by dopant Transient Enhanced Diffusion (TED) and clustering-induced deactivation. In this work, we proposed a novel point defect engineering solution to address the arsenic TED challenge. By overlapping arsenic doped region with silicon interstitials and vacancies, we observed enhanced and retarded arsenic diffusion upon anneal, respectively. We explain this phenomenon by arsenic interstitial diffusion mechanism. In addition, we implemented this interstitial-based mechanism into a kinetic Monte Carlo (kMC) simulator. The key role of interstitials in arsenic TED is confirmed. And we demonstrated that the simulator has an improved prediction capability for arsenic TED and deactivation. As a long time unsolved process challenge, arsenic segregation at SiO₂/Si interface was investigated using density functional theory (DFT) calculation. The segregation-induced arsenic dose loss not only increases resistance but also may induce interface states. We identified three arsenic complex configurations, [chemical formula] , [chemical formula] and [chemical formula], which are highly stabilized at SiO₂/Si interface due to the unique local bonding environments. Therefore, they could contribute to arsenic segregation as both initial stage precursors and dopant trapping sites. Our calculation indicates that arsenic atoms trapped in such interface complexes are electrically inactive. Finally, the formation and evolution dynamics of these interface arsenic-defect complexes are discussed and kMC models are constructed to describe the segregation effects. A potential problem for the p-type USJ formation is the recently found transient fast boron diffusion during solid phase epitaxial regrowth process. Using DFT calculations and molecular dynamics simulation, we identified an interstitial-based mechanism of fast boron diffusion in amorphous silicon. The activation energy for this diffusion mechanism is in good agreement with experimental results. In addition, this mechanism is consistent with the experimentally reported transient and concentration-dependent features of boron diffusion in amorphous silicon. / text
|
3 |
Numerical modelling of flow through packed beds of uniform spheres / Abraham Christoffel Naudé PrellerPreller, Abraham Christoffel Naudé January 2011 (has links)
This study addressed the numerical modelling of flow and diffusion in packed beds of mono-sized
spheres. Comprehensive research was conducted in order to implement various numerical
approaches in explicit1 and implicit2 simulations of flow through packed beds of uniform spheres.
It was noted from literature that the characterization of a packed bed using porosity as the only
geometrical parameter is inadequate (Van Antwerpen, 2009) and is still under much deliberation
due to the lack of understanding of different flow phenomena through packed beds. Explicit
simulations are not only able to give insight into this lack of understanding in fluid mechanics, but
can also be used to develop different flow correlations that can be implemented in implicit type
simulations.
The investigation into the modelling approach using STAR-CCM+®, presented a sound modelling
methodology, capable of producing accurate numerical results. A new contact treatment was
developed in this study that is able to model all the aspects of the contact geometry without
compromising the computational resources. This study also showed, for the first time, that the LES
(large eddy simulation) turbulence model was the only model capable of accurately predicting the
pressure drop for low Reynolds numbers in the transition regime. The adopted modelling approach
was partly validated in an extensive mesh independency test that showed an excellent agreement
between the simulation and the KTA (1981) and Eisfeld and Schnitzlein (2001) correlations'
predicted pressure drop values, deviating by between 0.54% and 3.45% respectively.
This study also showed that explicit simulations are able to accurately model enhanced diffusion
due to turbulent mixing, through packed beds. In the tortuosity study it was found that the tortuosity
calculations were independent of the Reynolds number, and that the newly developed tortuosity
tests were in good agreement with techniques used by Kim en Chen (2006), deviating by between
2.65% and 0.64%.
The results from the TMD (thermal mixing degree) tests showed that there appears to be no explicit
link between the porosity and mixing abilities of the packed beds tested, but this could be attributed
to relatively small bed sizes used and the positioning and size of the warm inlet. A multi-velocity test
showed that the TMD criterion is also independent of the Reynolds number. It was concluded that
the results from the TMD tests indicated that more elaborate packed beds were needed to derive
applicable conclusions from these type of mixing tests. The explicit BETS (braiding effect test section) simulation results confirmed the seemingly irregular
temperature trends that were observed in the experimental data, deviating by between 5.44% and
2.29%. From the detail computational fluid dynamics (CFD) results it was possible to attribute these
irregularities to the positioning of the thermocouples in high temperature gradient areas. The
validation results obtained in the effective thermal conductivity study were in good agreement with
the results of Kgame (2011) when the same fitting techniques were used, deviating by 5.1%. The
results also showed that this fitting technique is highly sensitive for values of the square of the
Pearson product moment correlation coefficient (RSQ) parameter and that the exclusion of the
symmetry planes improved the RSQ results. It was concluded that the introduction of the new
combined coefficient (CC) parameter is more suited for this type of fitting technique than using only
the RSQ parameter. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2012
|
4 |
Numerical modelling of flow through packed beds of uniform spheres / Abraham Christoffel Naudé PrellerPreller, Abraham Christoffel Naudé January 2011 (has links)
This study addressed the numerical modelling of flow and diffusion in packed beds of mono-sized
spheres. Comprehensive research was conducted in order to implement various numerical
approaches in explicit1 and implicit2 simulations of flow through packed beds of uniform spheres.
It was noted from literature that the characterization of a packed bed using porosity as the only
geometrical parameter is inadequate (Van Antwerpen, 2009) and is still under much deliberation
due to the lack of understanding of different flow phenomena through packed beds. Explicit
simulations are not only able to give insight into this lack of understanding in fluid mechanics, but
can also be used to develop different flow correlations that can be implemented in implicit type
simulations.
The investigation into the modelling approach using STAR-CCM+®, presented a sound modelling
methodology, capable of producing accurate numerical results. A new contact treatment was
developed in this study that is able to model all the aspects of the contact geometry without
compromising the computational resources. This study also showed, for the first time, that the LES
(large eddy simulation) turbulence model was the only model capable of accurately predicting the
pressure drop for low Reynolds numbers in the transition regime. The adopted modelling approach
was partly validated in an extensive mesh independency test that showed an excellent agreement
between the simulation and the KTA (1981) and Eisfeld and Schnitzlein (2001) correlations'
predicted pressure drop values, deviating by between 0.54% and 3.45% respectively.
This study also showed that explicit simulations are able to accurately model enhanced diffusion
due to turbulent mixing, through packed beds. In the tortuosity study it was found that the tortuosity
calculations were independent of the Reynolds number, and that the newly developed tortuosity
tests were in good agreement with techniques used by Kim en Chen (2006), deviating by between
2.65% and 0.64%.
The results from the TMD (thermal mixing degree) tests showed that there appears to be no explicit
link between the porosity and mixing abilities of the packed beds tested, but this could be attributed
to relatively small bed sizes used and the positioning and size of the warm inlet. A multi-velocity test
showed that the TMD criterion is also independent of the Reynolds number. It was concluded that
the results from the TMD tests indicated that more elaborate packed beds were needed to derive
applicable conclusions from these type of mixing tests. The explicit BETS (braiding effect test section) simulation results confirmed the seemingly irregular
temperature trends that were observed in the experimental data, deviating by between 5.44% and
2.29%. From the detail computational fluid dynamics (CFD) results it was possible to attribute these
irregularities to the positioning of the thermocouples in high temperature gradient areas. The
validation results obtained in the effective thermal conductivity study were in good agreement with
the results of Kgame (2011) when the same fitting techniques were used, deviating by 5.1%. The
results also showed that this fitting technique is highly sensitive for values of the square of the
Pearson product moment correlation coefficient (RSQ) parameter and that the exclusion of the
symmetry planes improved the RSQ results. It was concluded that the introduction of the new
combined coefficient (CC) parameter is more suited for this type of fitting technique than using only
the RSQ parameter. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2012
|
5 |
Processus diffusionnels à l'origine de l'évolution de la composition d’un alliage au cours de l'oxydation sélective en pointe de fissures intergranulaires. Application à la CSC de l'Alliage 600 en milieu primaire des REP / Study of the chromium depletion in relation with oxidized grain boundaries ahead of the stress corrosion crack tip of Alloy 600 in PWR primary waterNguejio Nguimatsia, Josiane 09 December 2016 (has links)
La corrosion sous contrainte (CSC) des alliages à base nickel est un des principaux phénomènes de dégradation des composants du circuit primaire des Réacteurs à Eau Pressurisée (REP). La compréhension de ce mécanisme de fissuration est un élément essentiel pour la prolongation de la durée d’exploitation des réacteurs.Des études antérieures ont permis d’établir un modèle de propagation de la CSC basé sur une oxydation sélective et dissymétrique du joint de grains en pointe de fissure qui s’accompagne d’une zone appauvrie en chrome. La cinétique de diffusion du chrome étant plus lente que celle de l’oxygène, il est supposé que la diffusion du chrome est une étape limitante de la propagation de la fissure. Si ces observations ont été validées dans la littérature, les hypothèses proposées sur l’origine de l’appauvrissement en chrome dans le grain sont encore sujettes à discussion. Comme la diffusion du chrome en volume dans les alliages base nickel à 350°C ne permet pas d’expliquer les ordres de grandeur des appauvrissements en chrome mesurés dans la littérature, il est supposé qu’il existerait un élément accélérateur de la diffusion du chrome dans l’alliage en pointe de fissure. Ainsi, deux hypothèses sont proposées dans ces travaux : la diffusion du chrome accélérée sous l’effet de la plasticité et la migration des joints de grains induite par la diffusion.L’objectif principal de la thèse a été de confronter les deux hypothèses énoncées au moyen d’essais expérimentaux et de modélisation afin de déterminer le mécanisme de formation de la zone appauvrie en chrome et d’identifier les paramètres favorisant cet appauvrissement.A cet effet, des essais de diffusion sous charge ont été réalisés dans le but d’étudier l’effet de la déformation plastique sur la diffusion du chrome. Les résultats ont permis d’établir une relation entre le coefficient de diffusion et la vitesse de déformation. Ainsi, une accélération de la diffusion en volume de l’ordre de 106 est observée à 350°C sous l’effet de plasticité. De même, des traitements thermiques visant à mettre en évidence la migration des joints de grains induite par la diffusion (DIGM) sont présentés dans ces travaux. Les caractérisations chimiques et microstructurales montrent que la DIGM est bien associée à la formation d’une zone appauvrie en chrome observée dans le sillage du joint de grains migrant. Pour finir, une discussion est proposée afin de relier ces hypothèses au modèle de propagation de la CSC. / Stress Corrosion Cracking (SCC) of nickel base alloys is one of the major degradation phenomena in the primary circuit of Pressurized Water Reactors (PWR). Understanding the SCC mechanism is a key issue for the extension of reactor lifetime.A SCC model based on a selective and asymmetrical oxidation of the grain boundary ahead of the crack tip has been proposed in previous studies. Adjacent to this oxide, a chromium-depleted area is observed exclusively in one of the two grains adjacent to the grain boundary. As oxygen transport is found to be faster than chromium diffusion in the alloy, the latter is assumed to be the rate-limiting step of crack propagation. Nevertheless, the mechanism responsible for chromium depletion is still under debate. Indeed, the lattice and the grain boundary diffusion coefficients of chromium in nickel-based alloys at 350°C are not high enough to explain the chromium depletion magnitudes measured in the literature. Accordingly, factors accelerating chromium diffusion in the alloy ahead of the SCC crack tip should exist. Thus, two assumptions have been proposed in this work: plasticity-enhanced chromium diffusion and diffusion-induced grain boundary migration (DIGM).The aim of this study is to confront these two assumptions by combining both experiments and modeling in order to explain chromium depleted areas observed at the SCC crack tip.Thus, diffusion tests under loading were performed in order to study the effect of plastic deformation on chromium diffusion. Plasticity-enhanced diffusion is evidenced. A relationship between the diffusion coefficient and strain rate has been established leading to a 106-fold increase of the diffusion coefficient at 350°C. In addition, thermal treatments and oxidation tests have shown that diffusion-induced grain boundary migration occurs in Ni-Cr alloys. DIGM leads to dissymmetric Cr-depleted areas, observed in the wake of the moving grain boundary.
|
6 |
Corrosion sous contrainte de l'alliage 600 en millieu primaire des REP : étude de la diffusion du chrome / Stress corrosion cracking of alloy 600 in primary water of PWR : study of chromium diffusionChetroiu, Bogdan-Adrian 15 January 2015 (has links)
L'Alliage 600 (Ni-15%Cr-10%Fe) est réputé sensible à la Corrosion Sous Contrainte (CSC) en milieu primaire des Réacteurs à Eau Pressurisée (REP). Des études récentes ont montré que la diffusion du chrome était une étape limitante dans la compréhension des mécanismes de CSC. En particulier, le mécanisme d'oxydation interne contrôlé par le taux de défauts local. Dans ce contexte, l'objectif de cette thèse a été de produire des données expérimentales concernant la cinétique de diffusion du chrome en fonction de différents états métallurgiques. Les coefficients de diffusion du chrome ont été mesurés par Spectrométrie de Masse des Ions Secondaires (SIMS) et Spectrométrie à Décharge Luminescente (SDL) en volume et aux joints de grains dans la gamme de température 678 K-1060 K sur des échantillons en nickel pur et d'Alliage 600 monocristallin ou polycristallin. Une partie de cette thèse s'est focalisée sur l'effet de la déformation plastique sur la cinétique de diffusion du chrome pour des échantillons en nickel monocristallin (orienté <101>). Les expériences de diffusion ont été réalisées sur des échantillons non déformés, pré-écrouis à 4% et 20% de déformation plastique et sur des essais in-situ de diffusion en fluage. Les résultats ont montré que les coefficients de diffusion mesurés sur les éprouvettes déformées plastiquement sous charge constante sont supérieurs de six ordres de grandeur à ceux obtenus à l'état non déformé ou pré-écroui. L'accélération de la cinétique de diffusion peut être attribuée à un couplage entre la mobilité des dislocations et la vitesse de déformation plastique. / Alloy 600 (Ni-15%Cr-10%Fe) is known to be susceptible to Stress Corrosion Cracking (SCC) in primary water of Pressurized Water Reactors (PWR). Recent studies have shown that chromium diffusion is a controlling rate step in the comprehension of SCC mechanism. In order to improve the understanding and the modelling of SCC of Alloy 600 in PWR primary medium the aim of this study was to collect data on kinetics diffusion of chromium. Volume and grain boundary diffusion of chromium in pure nickel and Alloy 600 (mono and poly-crystals) has been measured in the temperature range 678 K to 1060 K by using Secondary Ions Mass Spectroscopy (SIMS) and Glow Discharge-Optical Spectrometry (GD-OES) techniques. A particular emphasis has been dedicated to the influence of plastic deformation on chromium diffusion in nickel single crystals (orientated <101>) for different metallurgical states. The experimental tests were carried out in order to compare the chromium diffusion coefficients in free lattice (not deformed), in pre-hardening specimens (4% and 20%) and in dynamic deformed tensile specimens at 773 K. It has been found that chromium diffusivity measured in dynamic plastic deformed creep specimens were six orders of magnitude greater than those obtained in not deformed or pre-hardening specimens. The enhancement of chromium diffusivity can be attributed to the presence of moving dislocations generated during plastic deformation.
|
Page generated in 0.1127 seconds