• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 10
  • 9
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local spectroscopic properties of certain plasmonic and plexcitonic systems

Ugwuoke, Luke C. 06 December 2020 (has links)
In the framework of the quasi-static approximation (QSA), some theoretical studies were conducted within the local response approximation (LRA). In these studies, certain plasmonic and plexcitonic systems were proposed, and their spectroscopic properties investigated. The QSA allows us to study metal nanoparticles (MNPs) and inter-particle distances that are small compared to the wavelength of light in the medium surrounding the MNPs, while the LRA enables us to utilize the bulk dielectric response of the metal in consideration. We have studied the following properties in detail: localized surface plasmon resonances (LSPRs), plasmon-induced transparency (PIT), and plasmon-enhanced fluorescence (PEF), while exciton-induced transparency (EIT) has only been partly studied. LSPR and PIT are properties of plasmonic systems while PEF and EIT are properties of plexcitonic systems. Both PIT and EIT are forms of electromagnetically-induced transparency. We started by constructing a geometry-based theoretical model that predicts the LSPR formula of any member of a certain group of single MNPs, using the LSPR for the most complex MNP geometry in the group. The model shows that from the LSPR of a nanorice, one could predict the LSPRs of concentric nanoshells, solid and cavity nanorods and nanodisks, respectively, and solid and cavity nanospheres. These formulae serve as quick references for predicting LSPRs since they can easily be compared to LSPRs obtained from spectral analysis. Likewise, we studied LSPR in addition to PIT in a nanoegg-nanorod dimer. We proposed this dimer in order to investigate how the interplay between plasmon coupling and MNP sizes affects PIT in complex geometries such as nanoeggs. Our result shows that the formation of PIT dips — regions in the dimer spectra where little or no incident radiation is absorbed by the dimer — are strongly-dependent on the nanorod size, due to the dependence of the plasmon coupling strength on the half-length of the nanorod. We investigated the phenomenon of PEF using a nanoegg-emitter system and a nanorod-emitter system, respectively. Emitters are organic or inorganic materials whose radiative decay rates increase dramatically when placed near a MNP subjected to plasmon excitation. Our theoretical results show that the choice of the MNP-emitter system to use depends on both the intrinsic quantum yield of the emitter and the antenna efficiency of the MNP. Theory shows that PEF is more substantial when the former is very low, and it will always occur if the latter is greater than the former. A nanorod-emitter system should serve as the preferred choice, due to the relatively easier synthesis of nanorods compared to nanoeggs, and the large longitudinal polarizability of nanorods as a result of the lightning rod effect. However, our theoretical model also shows that a nanoegg-emitter system can rival the PEF parameters obtained in a nanorod-emitter system, due to an increase in the Purcell factor of the emitter with increasing core-offset of the nanoegg, resulting from the presence of dipole-active modes in the nanoegg. / Thesis (PhD (Physics))--University of Pretoria, 2020. / University of Pretoria / National Research Foundation (NRF) / Physics / PhD (Physics) / Unrestricted
2

Effects of Metallic Nanoalloys on Dye Fluorescence

Dorcéna, Cassandre Jenny 15 October 2007 (has links)
Metallic nanoparticles (NPs) are exploited for their ability to interact with organic compounds and to increase significantly the fluorescence intensity and the photostability of many fluorescent dye molecules. Metal enhanced fluorescence (MEF) is therefore widely investigated for biosensing applications. When used in immunoassays, silver island films (SIFs) could augment the fluorescence intensity of fluorescein by a factor of seventeen; SIFs were also able to double or triple the emission intensity of cyanine dyes which are commonly used in (deoxyribonucleic acid) DNA microarrays. The emission intensity of indocyanine green — widely used as a contrast agent in medical imaging — was about twenty times higher in the proximity of SIFs. This enhancement phenomenon — due to the surface plasmon polaritons associated with the metallic NPs — can be explained by energy transfer from the metal NPs to the fluorescent dye molecules or by a modified local electromagnetic field experienced by the fluorophores in the vicinity of metal surfaces. Our research focused on the optical characterization of colloidal gold-silver alloy NPs containing different ratios of gold and silver (Au<sub>1.00</sub>-Ag<sub>0.00</sub>, Au<sub>0.75</sub>-Ag<sub>0.25</sub>, Au<sub>0.50</sub>-Ag<sub>0.50</sub>, and Au<sub>0.25</sub>-Ag<sub>0.75</sub>), as well as their interaction with three fluorophores: rose bengal, rhodamine B, and fluorescein sodium. Depending upon the dye quantum yield and its concentration in solution, enhancement or quenching of fluorescence was obtained. Thus, a three to five times increase in fluorescence intensity was observed in a 2.0 mM solution of rose bengal with all nanoalloys, a slight enhancement of fluorescence (1.2 – 1.6 times) was noticed in a 0.13 mM solution of rhodamine B with all four types of NPs, and fluorescence quenching occurred in all the fluorescein-NP solutions regardless of the dye concentration. / Master of Science
3

Applications of Biogenic Silica Nanostructures from Diatoms

January 2014 (has links)
abstract: Biogenic silica nanostructures, derived from diatoms, possess highly ordered porous hierarchical nanostructures and afford flexibility in design in large part due to the availability of a great variety of shapes, sizes, and symmetries. These advantages have been exploited for study of transport phenomena of ions and molecules towards the goal of developing ultrasensitive and selective filters and biosensors. Diatom frustules give researchers many inspiration and ideas for the design and production of novel nanostructured materials. In this doctoral research will focus on the following three aspects of biogenic silica: 1) Using diatom frustule as protein sensor. 2) Using diatom nanostructures as template to fabricate nano metal materials. 3) Using diatom nanostructures to fabricate hybrid platform. Nanoscale confinement biogenetic silica template-based electrical biosensor assay offers the user the ability to detect and quantify the biomolecules. Diatoms have been demonstrated as part of a sensor. The sensor works on the principle of electrochemical impedance spectroscopy. When specific protein biomarkers from a test sample bind to corresponding antibodies conjugated to the surface of the gold surface at the base of each nanowell, a perturbation of electrical double layer occurs resulting in a change in the impedance. Diatoms are also a new source of inspiration for the design and fabrication of nanostructured materials. Template-directed deposition within cylindrical nanopores of a porous membrane represents an attractive and reproducible approach for preparing metal nanopatterns or nanorods of a variety of aspect ratios. The nanopatterns fabricated from diatom have the potential of the metal-enhanced fluorescence to detect dye-conjugated molecules. Another approach presents a platform integrating biogenic silica nanostructures with micromachined silicon substrates in a micro/nano hybrid device. In this study, one can take advantages of the unique properties of a marine diatom that exhibits nanopores on the order of 40 nm in diameter and a hierarchical structure. This device can be used to several applications, such as nano particles separation and detection. This platform is also a good substrate to study cell growth that one can observe the reaction of cell growing on the nanostructure of frustule. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2014
4

Plasmonic Enhanced Fluorescence using Gold Nanorods

Lee, Ming-Tao January 2010 (has links)
<p>The aims of this study are to first immobilize positively charged gold nanorods to negatively charged cell culture surfaces. Second, to use polyelectrolytes for controlling the distance between gold nanorods and fluorophores. This is used to optimally determine the distance, of which maximum fluorescence enhancement is achieved, between gold nanorods and fluorophores. In order to approach these aims, we use UV/VIS absorption spectroscopy, fluorescence spectroscopy, atomic force microscopy, and ellipsometry. The results show that we could control the immobilization of gold nanorods on plastic microwell plates and create reproducible polyelectrolyte layers, in order to control the distance between the gold nanorods and fluorophores. In addition, the localized surface plasmon resonance wavelength red shifted as the PELs increased. In conclusion, we found that the maximum fluorescence enhancement of the fluorophores (Cy7) is about 2.3 times at a fluorophores-nanoparticles separation of approximately 9-12 nm. This work contributes some research information towards the design of optical biochip platforms based on plasmon-enhanced fluorescence.</p>
5

Plasmonic Enhanced Fluorescence using Gold Nanorods

Lee, Ming-Tao January 2010 (has links)
The aims of this study are to first immobilize positively charged gold nanorods to negatively charged cell culture surfaces. Second, to use polyelectrolytes for controlling the distance between gold nanorods and fluorophores. This is used to optimally determine the distance, of which maximum fluorescence enhancement is achieved, between gold nanorods and fluorophores. In order to approach these aims, we use UV/VIS absorption spectroscopy, fluorescence spectroscopy, atomic force microscopy, and ellipsometry. The results show that we could control the immobilization of gold nanorods on plastic microwell plates and create reproducible polyelectrolyte layers, in order to control the distance between the gold nanorods and fluorophores. In addition, the localized surface plasmon resonance wavelength red shifted as the PELs increased. In conclusion, we found that the maximum fluorescence enhancement of the fluorophores (Cy7) is about 2.3 times at a fluorophores-nanoparticles separation of approximately 9-12 nm. This work contributes some research information towards the design of optical biochip platforms based on plasmon-enhanced fluorescence.
6

Optické odezvy biomolekul na pravidelných kovových plasmonických nanostrukturách / Optical responses of biomolecules on regular metal plasmonic nanostructures

Šubr, Martin January 2019 (has links)
Title: Optical Responses of Biomolecules on Regular Metal Plasmonic Nanostructures Author: Martin Šubr Department: Institute of Physics of Charles University Supervisor of the doctoral thesis: prof. RNDr. Marek Procházka, Dr., Institute of Physics of Charles University Abstract: Adsorption of molecules on metal plasmonic nanostructures leads to significant enhancement of many optical processes, such as Raman scattering (surface-enhanced Raman scattering - SERS) or fluorescence (surface-enhanced fluorescence - SEF). Two groups of substrates were tested within this thesis: (i) Silver nanorods prepared by oblique angle vapor deposition, and (ii) silver and gold nanoislands growing on magnetron-sputtered polytetrafluoroethylene film. Step-by- step optimization process was performed on the nanoislands in order to obtain optimum SERS sensitivity and reproducibility. Detailed SERS intensity profiles were obtained using gradient nanostructures with the localized surface plasmon resonance (LSPR) condition varying across the sample and three different excitation wavelengths. It was also found that spectral position and height of the LSPR band can be controlled simultaneously using mixed gold/silver nanoislands. Detailed investigation of polarization- and angular- dependences of anisotropic silver nanorods was...
7

Surface plasmon resonance study of the purple gold (AuAl₂) intermetallic, pH-responsive fluorescence gold nanoparticles, and gold nanosphere assembly

Samaimongkol, Panupon 31 July 2018 (has links)
In this dissertation, I have verified that the striking purple color of the intermetallic compound AuAl₂, also known as purple gold, originates from surface plasmons (SPs). This contrasts to a previous assumption that this color is due to an interband absorption transition. The existence of SPs was demonstrated by launching them in thin AuAl2 films in the Kretschmann configuration, which enables us to measure the SP dispersion relation. I observed that the SP energy in thin films of purple gold is around 2.1 eV, comparable to previous work on the dielectric function of this material. Furthermore, SP sensing using AuAl₂ also shows the ability to measure the change in the refractive index of standard sucrose solution. AuAl₂ in nanoparticle form is also discussed in terms of plasmonic applications, where Mie scattering theory predicts that the particle bears nearly uniform absorption over the entire visible spectrum with an order magnitude higher than a lightabsorbing carbonaceous particle. The second topic of this dissertation focuses on plasmon enhanced fluorescence in gold nanoparticles (Au NPs). Here, I investigated the distance-dependent fluorescence emission of rhodamine green 110 fluorophores from Au NPs with tunable spacers. These spacers consist of polyelectrolyte multilayers (PEMs) consisting of poly(allylamine hydrochloride) and poly(styrene sulfonate) assembled at pH 8.4. The distance between Au NPs and fluorophores was varied by changing the ambient pH from 3 to 10 and back, which causes the swelling and deswelling of PEM spacer. Maximum fluorescence intensity with 4.0-fold enhancement was observed with 7-layer coated Au NPs at ambient pH 10 referenced to pH 3. The last topic of this dissertation examines a novel approach to assemble nanoparticles, in particular, dimers of gold nanospheres (NSs). 16 nm and 60 nm diameter NSs were connected using photocleavable molecules as linkers. I showed that the orientation of the dimers can be controlled with the polarization of UV illumination that cleaves the linkers, making dipolar patches. This type of assembly provides a simple method with potential applications in multiple contexts, such as biomedicine and nanorobotics. / PHD / This dissertation covers three related topics. The first is an investigation of the optical properties of the unusually colored purple gold, which is a blend of gold and aluminum with the chemical formula is AuAl₂. This compound is interesting in that the origin of this color is different from most other metals. In the case of gold, for example, the metal gold is yellow color by absorbing the blue component from white light, leaving behind yellow color reflected light. The blue light is absorbed by electrons that change their state from a lower energy to a higher one. In purple gold, the color results from a different phenomenon known as “surface plasmons.” Surface plasmons are waves consisting of many electrons that move back and forth near an interface between a metal and an electrical insulator. The energy of surface plasmons in purple gold is low and corresponds to the purple color in this compound. Recently, published theoretical work supports the possibility of surface plasmons in purple gold. In this dissertation, I experimentally verify the presence of surface plasmons in purple gold. To launch surface plasmons, light was reflected off of a purple gold film deposited on the hypotenuse of a prism with varying angles of incidence. Surface plasmons can be observed by the sudden dimming of reflected light. From this, I was able to extract the surface plasmon dispersion relation, which is the relation between the inverse of the wavelength and the energy of the surface plasmons. In addition, I computed the light absorption properties of purple v gold when it is used in a nanoparticle form. The computational result showed that small purple gold nanoparticles absorb light very well, which may be useful in photothermal cancer therapy and solar steam generation. The second dissertation topic comprises a study of fluorescent molecules. These are compounds that reemit light with a different and redder color than the color of the light that illuminates them. In this experiment, green fluorescent molecules were placed near the surface of gold nanoparticles to observe how the brightness of the light emission is affected by the distance between the molecule and the metal. The underlying mechanism is based on localized surface plasmon resonances in gold nanoparticles. Localized surface plasmon resonances are waves consisting of many electrons that oscillate inside the particle, and they only occur when light at certain frequency illuminate the particle. On the resonance, the particle also exhibits the brighter light around the particle’s surface but the dimmer light away from the particle’s surface. The light enhancement from the particle can change the light emission of the fluorescent molecules. If the fluorescent molecules were placed in the range of localized surface plasmon resonances, the light emission is increased owing to the brighter light from the particle. However, if the fluorescent molecules were placed further away from the range of localized surface plasmon resonances, the light emission is decreased owing to the dimmer light from the particle. The distance between the surface of gold nanoparticle and the fluorescent molecules was varied by wrapping the gold particles with ultra-thin films of different plastic polymers before attaching fluorescent molecules to the surface of the films. These polymer films have the property that they swell and shrink when the acidity and basicity of the solution of gold particles changes, which allows me to vary the distance between the gold particles and fluorescent molecules. The results showed that the observed light gets dimmer when the solution is more acidic. On the other hand, the brighter light is noticed when the solution is more basic, and this observation is repeatable many times. Moreover, my work differs from other published works vi in that the particles with the polymer films are more robust and stable than the other particles. This allows more design flexibility and suggests applications in biomedical or environmental research where the particles can be used to locally measure properties, such as acidity in confined spacers such as living cells. It may be possible to use this technique for tumor cells in our body or toxic pollutants in the air or water. The last dissertation topic involves assembling nanoparticles to build them into larger structures. In this experiment, I fabricated particle dimers that consisted of two gold nanospheres of different sizes. They were attached together by using small molecules that are sensitive to ultraviolet (UV) light, where these molecules allow small gold nanospheres to be attached to large gold nanospheres only in those locations on the large nanospheres that have been illuminated with a sufficient amount of UV light. To achieve this alignment, UV light with a linear polarization (a specific electric field direction) was used to select the area on the large nanospheres where the UV light was particularly intense and therefore able to break the molecules, leaving positively charged surface patches on the spheres. This results in the electrostatic attraction between the positive patches on the large gold nanospheres and the negatively charged small gold nanospheres. With this method, I was able to make dimers of nanospheres in a preferred alignment by changing the polarization of UV light. The experimental results showed a good yield of dipolar patches, which allows multifunctional nanostructures with applications in nanomedicine, optical sensing, nanoelectronics, etc.
8

Antibody-conjugated Gold Nanoparticles integrated in a fluorescence based Biochip

Ljungblad, Jonas January 2009 (has links)
<p>Gold nanoparticles exhibit remarkable optical properties and could prove useful in sensitive biosensing applications. Upon illumination gold nanoparticles produce localized surface plasmons, which influence nearby fluorophores and an enhancement in their fluorescence intensity can be observed. This property makes gold nanoparticles attractive for enhancing optical signals.</p><p>In this project gold nanoparticles were functionalized with an antibody and immobilized to the surface of an existing biochip platform based on fluorescence. The aim was to investigate the possibility of obtaining an increased fluorescence signal from the gold nanoparticles. Two different conjugation procedures were investigated, direct physisorption and covalent attachment of the antibodies to the particles. Activity of bound antibodies was confirmed in both cases.</p><p>The on-chip fluorescence intensity produced by the different conjugates was monitored by use a specialized fluorescence reader designed for point-of-care use. AFM and SEM were used to determine the surface concentration of particles. A correlation between the produced fluorescence intensity and the surface concentration could be seen.</p>
9

Antibody-conjugated Gold Nanoparticles integrated in a fluorescence based Biochip

Ljungblad, Jonas January 2009 (has links)
Gold nanoparticles exhibit remarkable optical properties and could prove useful in sensitive biosensing applications. Upon illumination gold nanoparticles produce localized surface plasmons, which influence nearby fluorophores and an enhancement in their fluorescence intensity can be observed. This property makes gold nanoparticles attractive for enhancing optical signals. In this project gold nanoparticles were functionalized with an antibody and immobilized to the surface of an existing biochip platform based on fluorescence. The aim was to investigate the possibility of obtaining an increased fluorescence signal from the gold nanoparticles. Two different conjugation procedures were investigated, direct physisorption and covalent attachment of the antibodies to the particles. Activity of bound antibodies was confirmed in both cases. The on-chip fluorescence intensity produced by the different conjugates was monitored by use a specialized fluorescence reader designed for point-of-care use. AFM and SEM were used to determine the surface concentration of particles. A correlation between the produced fluorescence intensity and the surface concentration could be seen.
10

Nanofabrication, Plasmon Enhanced Fluorescence and Photo-oxidation Kinetics of CdSe Nanoparticles

Chen, Jixin 2010 May 1900 (has links)
Unconventional nanofabrication techniques; both those which have been newly developed and those under development, had brought inexpensive, facile, yet high quality means to fabricate nanostructures that have feature sizes of less than 100 nm in industry and academia. This dissertation focuses on developing unconventional fabrication techniques, building studying platforms, and studying the mechanisms behind them. The studies are divided into two main facets and four chapters. The first facet, in Chapter II and Chapter III, deals with the research and development of different nanofabrication techniques and nanostructures. These techniques include litho-synthesis, colloidal lithography, and photolithography. The nanostructures that were fabricated by these techniques include the metal nanoparticle arrays, and the self-assembled CdSe nanoring arrays. At the same time, the dissertation provides mechanisms and models to describe the physical and chemical nature of these techniques. The second area of this study, in Chapter III to Chapter V, presents the applications of these nanostructures in fundamental studies, i.e. the mechanisms of plasmon enhanced fluorescence and photo-oxidation kinetics of CdSe quantum dots, and applications such as molecular sensing and material fabrication. More specifically, these applications include tuning the optical properties of CdSe quantum dots, biomodification of CdSe quantum dots, and copper ion detection using plasmon and photo enhanced CdSe quantum dots. We have successfully accomplished our research goals in this dissertation. Firstly, we were able to tune the emission wavelength of quantum dots, blue-shifted for up to 45 nm, and their surface functionalization with photo-oxidation. A kinetic model to calculate the photo-oxidation rates was established. Secondly, we established a simple mathematical model to explain the mechanism of plasmon enhanced fluoresce of quantum dots. Our calculation and experimental data support the fluorescence resonance energy transfer (FRET) mechanism between quantum dots and the metal nanoparticles. Thirdly, we successfully pattered the CdSe quantum dots (diameter ~4 nm) into nanorings with tunable diameters and annular sizes on different substrates. We also established a physical model to quantitatively explain the mechanism with the forces that involved in the formation of the nanorings.

Page generated in 0.092 seconds