• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • Tagged with
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation numérique et assimilation de données de la dispersion de radionucléides en champ proche et à l'échelle continentale

Krysta, Monika Le Dimet, François-Xavier. Bocquet, Marc. January 2006 (has links) (PDF)
Thèse de doctorat : Chimie de la pollution atmosphérique et physique de l'environnement : Paris 12 : 2006. / Titre provenant de l'écran-titre. Pagination : 183 p. Bibliogr. p. 175-183.
2

Méthodes de Bootstrap en population finie

Chauvet, Guillaume 14 December 2007 (has links) (PDF)
Cette thèse est consacrée aux méthodes de Bootstrap pour unepopulation ?nie. Le premier chapitre introduit quelques rappels sur l'échantillonnage et propose une présentation synthétique des principales méthodes d'estimation de précision. Le chapitre 2 rappelle les méthodes de Bootstrap proposées pour un sondage aléatoire simple et introduit deux nouvelles mé thodes. Le chapitre 3 donne un nouvel algorithme de Bootstrap, consistant pour l'estimation de variance d'un estimateur par substitution dans le cas d'un tirage à forte entropie. Dans le chapitre 4, nous introduisons la notion d'échantillonnage équilibré et proposons un algorithme rapide. Nous montrons que l'algorithme de Bootstrap proposé est également consistant pour l'estimation de variance d'un tirage équilibré à entropie maximale. Le cas d'un échantillonnage complexe et celui d'un redressement est traité au chapitre 5. Une application au Nouveau Recensement de la population est donnée dans le chapitre 6.
3

Analyse en ondelettes et prolongement des champs de potentiel, développement d'une théorie 3-D et application en géophysique /

Boukerbout, Hassina. January 2004 (has links)
Thèse de doctorat--Sciences de la terre--Rennes 1, 2004. / Contient aussi des textes en anglais. Bibliogr., 6 p. Notes bibliogr. Résumé en français et en anglais.
4

Méthodes de Bootstrap en population finie

Chauvet, Guillaume Carbon, Michel January 2008 (has links)
Thèse de doctorat : Statistiques : Rennes 2 : 2007. / Bibliogr. p. 205.Table des figures.
5

Modèles de maximum d'entropie pour la détection de la peau

Zheng, Huicheng Daoudi, Mohamed. Jedynak, Bruno January 2007 (has links)
Reproduction de : Thèse de doctorat : Informatique : Lille 1 : 2004. / N° d'ordre (Lille 1) : 3508. Texte en anglais. Résumé en français et en anglais. Titre provenant de la page de titre du document numérisé. Bibliogr. p. 101-107. Liste des publications.
6

Analyse des trains de spike à large échelle avec contraintes spatio-temporelles : application aux acquisitions multi-électrodes rétiniennes

Nasser, Hassan 14 March 2014 (has links) (PDF)
L'évolution des techniques d'acquisition de l'activité neuronale permet désormais d'enregistrer simultanément jusqu'à plusieurs centaines de neurones dans le cortex ou dans la rétine. L'analyse de ces données nécessite des méthodes mathématiques et numériques pour décrire les corrélations spatiotemporelles de la population neuronale. Une méthode couramment employée est basée sur le principe d'entropie maximale. Dans ce cas, le produit N×R, où N est le nombre de neurones et R le temps maximal considéré dans les corrélations, est un paramètre crucial. Les méthodes de physique statistique usuelles sont limitées aux corrélations spatiales avec R = 1 (Ising) alors que les méthodes basées sur des matrices de transfert, permettant l'analyse des corrélations spatio-temporelles (R > 1), sont limitées à N×R≤20. Dans une première partie, nous proposons une version modifiée de la méthode de matrice de transfert, basée sur un algorithme de Monte-Carlo parallèle, qui nous permet d'aller jusqu'à N×R=100. Dans la deuxième partie, nous présentons la bibliothèque C++ Enas, dotée d'une interface graphique développée pour les neurobiologistes. Enas offre un environnement hautement interactif permettant aux utilisateurs de gérer les données, effectuer des analyses empiriques, interpoler des modèles statistiques et visualiser les résultats. Enfin, dans une troisième partie, nous testons notre méthode sur des données synthétiques et réelles (rétine, fournies par nos partenaires biologistes). Notre analyse non exhaustive montre l'avantage de considérer des corrélations spatio-temporelles pour l'analyse des données rétiniennes; mais elle montre aussi les limites des méthodes d'entropie maximale.
7

Analyse des trains de spike à large échelle avec contraintes spatio-temporelles : application aux acquisitions multi-électrodes rétiniennes / Analysis of large scale spiking networks dynamics with spatio-temporal constraints : application to multi-electrodes acquisitions in the retina

Nasser, Hassan 14 March 2014 (has links)
L’évolution des techniques d’acquisition de l’activité neuronale permet désormais d'enregistrer simultanément jusqu’à plusieurs centaines de neurones dans le cortex ou dans la rétine. L’analyse de ces données nécessite des méthodes mathématiques et numériques pour décrire les corrélations spatiotemporelles de la population neuronale. Une méthode couramment employée est basée sur le principe d’entropie maximale. Dans ce cas, le produit N×R, où N est le nombre de neurones et R le temps maximal considéré dans les corrélations, est un paramètre crucial. Les méthodes de physique statistique usuelles sont limitées aux corrélations spatiales avec R = 1 (Ising) alors que les méthodes basées sur des matrices de transfert, permettant l’analyse des corrélations spatio-temporelles (R > 1), sont limitées à N×R≤20. Dans une première partie, nous proposons une version modifiée de la méthode de matrice de transfert, basée sur un algorithme de Monte-Carlo parallèle, qui nous permet d’aller jusqu’à N×R=100. Dans la deuxième partie, nous présentons la bibliothèque C++ Enas, dotée d’une interface graphique développée pour les neurobiologistes. Enas offre un environnement hautement interactif permettant aux utilisateurs de gérer les données, effectuer des analyses empiriques, interpoler des modèles statistiques et visualiser les résultats. Enfin, dans une troisième partie, nous testons notre méthode sur des données synthétiques et réelles (rétine, fournies par nos partenaires biologistes). Notre analyse non exhaustive montre l’avantage de considérer des corrélations spatio-temporelles pour l’analyse des données rétiniennes; mais elle montre aussi les limites des méthodes d’entropie maximale. / Recent experimental advances have made it possible to record up to several hundreds of neurons simultaneously in the cortex or in the retina. Analyzing such data requires mathematical and numerical methods to describe the spatio-temporal correlations in population activity. This can be done thanks to Maximum Entropy method. Here, a crucial parameter is the product N×R where N is the number of neurons and R the memory depth of correlations (how far in the past does the spike activity affects the current state). Standard statistical mechanics methods are limited to spatial correlation structure with R = 1 (e.g. Ising model) whereas methods based on transfer matrices, allowing the analysis of spatio-temporal correlations, are limited to NR ≤ 20. In the first part of the thesis we propose a modified version of the transfer matrix method, based on the parallel version of the Montecarlo algorithm, allowing us to go to NR=100. In a second part we present EnaS, a C++ library with a Graphical User Interface developed for neuroscientists. EnaS offers highly interactive tools that allow users to manage data, perform empirical statistics, modeling and visualizing results. Finally, in a third part, we test our method on synthetic and real data sets. Real data set correspond to retina data provided by our partners neuroscientists. Our non-extensive analysis shows the advantages of considering spatio-temporal correlations for the analysis of retina spike trains, but it also outlines the limits of Maximum Entropy methods.
8

Statistical modeling of protein sequences beyond structural prediction : high dimensional inference with correlated data / Modélisation statistique des séquences de protéines au-delà de la prédiction structurelle : inférence en haute dimension avec des données corrélées

Coucke, Alice 10 October 2016 (has links)
Grâce aux progrès des techniques de séquençage, les bases de données génomiques ont connu une croissance exponentielle depuis la fin des années 1990. Un grand nombre d'outils statistiques ont été développés à l'interface entre bioinformatique, apprentissage automatique et physique statistique, dans le but d'extraire de l'information de ce déluge de données. Plusieurs approches de physique statistique ont été récemment introduites dans le contexte précis de la modélisation de séquences de protéines, dont l'analyse en couplages directs. Cette méthode d'inférence statistique globale fondée sur le principe d'entropie maximale, s'est récemment montrée d'une efficacité redoutable pour prédire la structure tridimensionnelle de protéines, à partir de considérations purement statistiques.Dans cette thèse, nous présentons les méthodes d'inférence en question, et encouragés par leur succès, explorons d'autres domaines complexes dans lesquels elles pourraient être appliquées, comme la détection d'homologies. Contrairement à la prédiction des contacts entre résidus qui se limite à une information topologique sur le réseau d'interactions, ces nouveaux champs d'application exigent des considérations énergétiques globales et donc un modèle plus quantitatif et détaillé. À travers une étude approfondie sur des donnéesartificielles et biologiques, nous proposons une meilleure interpretation des paramètres centraux de ces méthodes d'inférence, jusqu'ici mal compris, notamment dans le cas d'un échantillonnage limité. Enfin, nous présentons une nouvelle procédure plus précise d'inférence de modèles génératifs, qui mène à des avancées importantes pour des données réelles en quantité limitée. / Over the last decades, genomic databases have grown exponentially in size thanks to the constant progress of modern DNA sequencing. A large variety of statistical tools have been developed, at the interface between bioinformatics, machine learning, and statistical physics, to extract information from these ever increasing datasets. In the specific context of protein sequence data, several approaches have been recently introduced by statistical physicists, such as direct-coupling analysis, a global statistical inference method based on the maximum-entropy principle, that has proven to be extremely effective in predicting the three-dimensional structure of proteins from purely statistical considerations.In this dissertation, we review the relevant inference methods and, encouraged by their success, discuss their extension to other challenging fields, such as sequence folding prediction and homology detection. Contrary to residue-residue contact prediction, which relies on an intrinsically topological information about the network of interactions, these fields require global energetic considerations and therefore a more quantitative and detailed model. Through an extensive study on both artificial and biological data, we provide a better interpretation of the central inferred parameters, up to now poorly understood, especially in the limited sampling regime. Finally, we present a new and more precise procedure for the inference of generative models, which leads to further improvements on real, finitely sampled data.
9

On choice models in the context of MDPs

Mohammadpour, Sobhan 10 1900 (has links)
Cette thèse se penche sur les modèles de choix, des distributions sur des ensembles d'alternatives. Les modèles de choix sur les processus décisionnels de Markov (MDP) peuvent décomposer de très grands espaces alternatifs en procédures étape par étape conçues pour non seulement combattre la malédiction de la dimensionnalité mais aussi pour mieux refléter la dynamique sous-jacente. La première partie est consacrée à l'estimation du temps de trajet dans le cadre de la modélisation du choix de chemin. Les modèles de choix de chemin sont des modèles de choix sur l'ensemble des chemins utilisés pour modéliser le flux de circulation. Intuitivement, le temps de trajet est l'une des caractéristiques les plus importantes lors du choix des chemins, mais les temps de trajet ne sont pas toujours connus. En revanche, le cadre classique suppose que ces deux étapes sont séquentielles, car les temps de trajet des arcs font partie de l'entrée du processus d'estimation du choix de chemin. Pourtant, les interdépendances complexes signifient que ce modèle de choix de chemin peut complémenter toute observation lors de l'estimation des temps de trajet. Nous construisons un modèle statistique pour l'estimation du temps de trajet et proposons de marginaliser les caractéristiques non observées. En utilisant ces idées, nous montrons que nous sommes capables d'apprendre des modèles de choix de chemin sans observer de chemins réels et à différentes granularités. La deuxième partie se concentre sur les échecs des MDP régularisés et comment la régularisation peut avoir des effets secondaires inattendus, tels que la divergence dans les chemins stochastiques les plus courts ou des fonctions de valeur déraisonnablement grandes. Les MDP régularisés ne sont rien d'autre qu'une application des modèles de choix aux MDP. Ils sont utilisés dans l'apprentissage par renforcement (RL) pour obtenir, entre autres choses, un modèle de choix sur les trajectoires possibles pour l'apprentissage par renforcement inverse, transférer des connaissances préalables au modèle, ou obtenir des politiques qui exploitent tous les objectifs dans l'environnement. Ces effets secondaires sont exacerbés dans les espaces d'action dépendants de l'état. Comme mesure d'atténuation, nous introduisons deux transformations potentielles, et nous évaluons leur performance sur un problème de conception de médicaments. / This thesis delves on choice models, distributions on sets of alternatives. Choice models on Markov decision processes (MDPs) can break down very large alternative spaces into step-by-step procedures designed to not only tackle the curse of dimensionality but also to reflect the underlying dynamics better. The first part is devoted to travel time estimation as part of path choice modeling. Path choice models are choice models on the set of paths used to model traffic flow. Intuitively, travel time is one of the more important features when choosing paths, yet travel times are not always known. In contrast, the classical setting assumes that these two steps are sequential, as arc travel times are part of the input of the path choice estimation process. Yet the intricate interdependences mean that that path choice model can complement any observation when estimating travel times. We build a statistical model for travel time estimation and propose marginalizing the unobserved features. Using these ideas, we show that we are able to learn path choice models without observing actual paths and at different granularity. The second part focuses on the failings of regularized MDPs and how regularization may have unexpected side effects, such as divergence in stochastic shortest paths or unreasonably large value functions. Regularized MDPs are nothing but an application of choice models to MDPs. They are used in reinforcement learning (RL) to get, among other things, a choice model on possible trajectories for inverse reinforcement learning, transfer prior knowledge to the model, or to get policies that exploit all goals in the environment. These side effects are exacerbated in state-dependent action spaces. As a mitigation, we introduce two potential transformations, and we benchmark their performance on a drug design problem.
10

Analyse et extraction de paramètres de complexité de signaux biomédicaux / Analysis and extraction of complexity parameters of biomedical signals

Zaylaa, Amira 15 December 2014 (has links)
L'analyse de séries temporelles biomédicales chaotiques tirées de systèmes dynamiques non-linéaires est toujours un challenge difficile à relever puisque dans certains cas bien spécifiques les techniques existantes basées sur les multi-fractales, les entropies et les graphes de récurrence échouent. Pour contourner les limitations des invariants précédents, de nouveaux descripteurs peuvent être proposés. Dans ce travail de recherche nos contributions ont porté à la fois sur l’amélioration d’indicateurs multifractaux (basés sur une fonction de structure) et entropiques (approchées) mais aussi sur des indicateurs de récurrences (non biaisés). Ces différents indicateurs ont été développés avec pour objectif majeur d’améliorer la discrimination entre des signaux de complexité différente ou d’améliorer la détection de transitions ou de changements de régime du système étudié. Ces changements agissant directement sur l’irrégularité du signal, des mouvements browniens fractionnaires et des signaux tirés du système du Lorenz ont été testés. Ces nouveaux descripteurs ont aussi été validés pour discriminer des fœtus en souffrance de fœtus sains durant le troisième trimestre de grossesse. Des mesures statistiques telles que l’erreur relative, l’écart type, la spécificité, la sensibilité ou la précision ont été utilisées pour évaluer les performances de la détection ou de la classification. Le fort potentiel de ces nouveaux invariants nous laisse penser qu’ils pourraient constituer une forte valeur ajoutée dans l’aide au diagnostic s’ils étaient implémentés dans des logiciels de post-traitement ou dans des dispositifs biomédicaux. Enfin, bien que ces différentes méthodes aient été validées exclusivement sur des signaux fœtaux, une future étude incluant des signaux tirés d’autres systèmes dynamiques nonlinéaires sera réalisée pour confirmer leurs bonnes performances. / The analysis of biomedical time series derived from nonlinear dynamic systems is challenging due to the chaotic nature of these time series. Only few classical parameters can be detected by clinicians to opt the state of patients and fetuses. Though there exist valuable complexity invariants such as multi-fractal parameters, entropies and recurrence plot, they were unsatisfactory in certain cases. To overcome this limitation, we propose in this dissertation new entropy invariants, we contributed to multi-fractal analysis and we developed signal-based (unbiased) recurrence plots based on the dynamic transitions of time series. Principally, we aim to improve the discrimination between healthy and distressed biomedical systems, particularly fetuses by processing the time series using our techniques. These techniques were either validated on Lorenz system, logistic maps or fractional Brownian motions modeling chaotic and random time series. Then the techniques were applied to real fetus heart rate signals recorded in the third trimester of pregnancy. Statistical measures comprising the relative errors, standard deviation, sensitivity, specificity, precision or accuracy were employed to evaluate the performance of detection. Elevated discernment outcomes were realized by the high-order entropy invariants. Multi-fractal analysis using a structure function enhances the detection of medical fetal states. Unbiased cross-determinism invariant amended the discrimination process. The significance of our techniques lies behind their post-processing codes which could build up cutting-edge portable machines offering advanced discrimination and detection of Intrauterine Growth Restriction prior to fetal death. This work was devoted to Fetal Heart Rates but time series generated by alternative nonlinear dynamic systems should be further considered.

Page generated in 0.0823 seconds