• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 185
  • 185
  • 185
  • 47
  • 47
  • 46
  • 35
  • 33
  • 27
  • 19
  • 19
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Cytoplasmic Localization of HIV-1 Vif Is Necessary for Apobec3G Neutralization and Viral Replication: A Dissertation

Farrow, Melissa Ann 05 May 2005 (has links)
The binding of HIV-1 Vif to the cellular cytidine deaminase Apobec3G and subsequent prevention of Apobec3G virion incorporation have recently been identified as critical steps for the successful completion of the HIV-1 viral life cycle. This interaction occurs in the cytoplasm where Vif complexes with Apobec3G and directs its degradation via the proteasome pathway or sequesters it away from the assembling virion, thereby preventing viral packaging of Apobec3G. While many recent studies have focused on several aspects of Vif interaction with Apobec3G, the subcellular localization of Vif and Apobec3G during the viral life cycle have not been fully considered. Inhibition of Apobec3G requires direct interaction of Vif with Apobec3G, which can only be achieved when both proteins are present in the same subcellular compartment. In this thesis, a unique approach was utilized to study the impact of Vif subcellular localization on Vif function. The question of whether localization could influence function was brought about during the course of studying a severely attenuated viral isolate from a long-term non-progressor who displayed a remarkable disease course. Initial observations indicated that this highly attenuated virus contained a mutant Vif protein that inhibited growth and replication. Upon further investigation, it was found that the Vif defect was atypical in that the mutant was fully functional in in vitro assays, but that it was aberrantly localized to the nucleus in the cell. This provided the basis for the study of Vif localization and its contribution to Vif function. In addition to the unique Vif mutant that was employed, while determining the localization and replication phenotypes of the differentially localized Vif proteins, a novel pathway for Vif function was defined. Copious publications have recently defined the mechanism for Vif inhibition of Apobec3G. Vif is able to recruit Apobec3G into a complex that is targeted for degradation by the proteasome. However, this directed degradation model did not fully explain the complete neutralization of Apobec3G observed in cell culture. Other recent works have proposed the existence of a second, complementary pathway for Vif function. This pathway is defined here as formation of an aggresome that prevents Apobec3G packaging by binding and sequestering Apobec3G in a perinuclear aggregate. This second mechanism is believed to work in parallel with the already defined directed degradation pathway to promote complete exclusion of Apobec3G from the virion. The data presented here provide insight into two areas of HIV research. First, the work on the naturally occurring Vif mutant isolated from a long-term non-progress or confirms the importance of Vif in in vivo pathogenesis and points to Vif as a potentially useful gene for manipulation in vaccine or therapy design due to its critical contributions to in vivo virus replication. Additionally, the work done to address the subcellular localization of Vif led to the proposal of a second pathway for Vif function. This could have implications in the field of basic Vif research in terms of completely understanding and defining the functions of Vif. Again, a more complete knowledge about Vif can help in the development of novel therapies aimed at disrupting Vif function and abrogating HIV-1 replication.
142

Cytotoxic T-Lymphocyte Responses During Acute Epstein-Barr Virus Infection

Beaulieu, Brian L. 13 May 1996 (has links)
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus which causes acute infectious mononucleosis and is etiologically associated with malignant lymphoproliferative disorders including Burkitt's lymphoma, nasopharyngeal carcinoma, B-cell lymphomas in immunocompromised hosts, Hodgkin's disease, T cell lymphomas, and smooth muscle tumors in allograft recipients. The medical significance of EBV is underscored by its potent growth transforming effects on human B-lymphocytes in-vitro and the potentially oncogenic consequences of infection in-vivo. The majority of EBV-associated malignancies occur in the setting of chronic infection and strong virus-specific humoral immunity, suggesting that cellular immunity is primarily responsible for preventing the outgrowth of EBV-transformed B cells in-vivo. Similarly, primary EBV infection in adolescents and adults stimulates an intense cytotoxic-T-lymphocyte (CTL) response which coincides with a marked reduction in the number of infected B cells in the peripheral blood. Evidence of previous EBV infection can be confirmed by the presence of EBV-specific, HLA-restricted memory T cells in the peripheral blood which inhibit the outgrowth of newly EBV-transformed B cells and efficiently lyse established autologous B-lymphoblastoid cell lines. Worldwide, EBV is responsible for substantial morbidity, comparable to measles, mumps and hepatitis virus, for which vaccines exists. Accordingly, the potential public health impact of an EBV vaccine has reinforced our efforts to identify the immunodominant virus-encoded T-cell epitopes which stimulate naive CTL effectors during acute infection and maintain memory CTL surveillance during convalescence. The EBV-encoded antigens against which the memory CTL response is directed have been partially defined, and include most of the EBV latent proteins (EBNA-2, 3a, 3b, 3c, LP, and LMP-l, 2a, 2b) consistently expressed by in-vitro EBV-transformed B lymphocytes (type-III latency). Importantly, all EBV-associated malignancies express EBNA-1, and as yet no EBNA-1-specific memory CTL have been convincingly demonstrated. Additionally, many EBV-specific CTL lines and clones have been described which do not recognize any of the known latent proteins or other EBV protein antigens tested thus far. Thus while much is known about CTL-mediated immunity against EBV, our knowledge of EBV-derived CTL epitopes remains incomplete. In contrast to the EBV-specific memory CTL response, very little is known about the source of viral epitopes recognized during the primary CTL response to EBV. In this regard, acute infectious mononucleosis represents an ideal model system to study virus-specific, cell-mediated immunity. Acute IM is a self-limited illness characterized by the appearance of "atypical" lymphocytes (CD3+/CD8+/HLADR+), including both virus-specific and alloreactive CTL, which undoubtedly contribute to virus elimination and provide CTL precursors for life-long immunity to EBV. Like other herpesvirus, EBV can undergo either lytic or latent cycle replication. During primary EBV infection many lytic cycle genes are expressed which are likely responsible for stimulating the intense cellular immune response associated with acute infectious mononucleosis. During convalescence a minor population of circulating B cells remain latently infected, harbor multiple EBV episomes, and express only EBNA-1 and possibly LMP-2a (type-I latency). Thus, latency type-I infected B cells in-vivo express a much more restricted spectrum of latent proteins and are therefore not subject to elimination by the same virus-specific CTL as are type-III EBV latently infected cells. Accordingly, many mechanisms have been proposed to explain EBV persistence including; restricted expression of EBV latent genes, reduced levels of cellular adhesion molecules, downregulation of MHC class-I molecules, absence of EBNA-1 T-cell-epitopes, and most recently, EBNA-1-mediated inhibition of antigen processing. While these mechanisms may contribute to ineffective T cell surveillance against latency type-I EBV- infected cells, B cells expressing the full spectrum of latent proteins (type-III) also exist transiently in vivoand maintain detectable humoral and CTL responses to most latent proteins. Our first goal was to identify the virus-encoded immunodominant antigens recognized by in-vivoactivated MHC class-I restricted CTL isolated from college students experiencing primary EBV infection, manifested as acute IM. Following a prodromal period of several weeks, newly EBV infected patients present with signs and symptoms of acute IM, including elevated numbers of activated CD8+ T cells in their peripheral blood, many of which, like memory CTL, are EBV-specific and HLA-restricted. In order to address the issue of EBV persistence and the immune control of EBV-induced lymphoproliferation, we also studied the long-term EBV-specific memory CTL response in these same individuals. Blood from acute IM patients and healthy EBV seropositive donors served as a source of peripheral blood lymphocytes to generate bulk CTL cultures and autologous target cells. The infecting strain of EBV was determined for each patient by DNA-PCR amplification of virus from saliva. Lymphocytes were isolated from whole blood by Ficoll-Paque density centrifugation and T- and B-cell enriched populations were obtained by AET-sheep red cell rosette selection. Autologous B cell blasts served as a source of target cells and recombinant vaccinia virus constructs were used to introduce individual EBV latent genes into target cells. Expression of individual EBV genes in target cells was confirmed by both western blot and immunofluorescence. Primary CTL responses to EBV were evaluated in standard 5lCr release assays using freshly isolated, T-cell enriched PBL from acute IM patients as effector cells. EBV-specific memory CTL responses were evaluated with bulk CTL culture generated by in-vitro restimulation with autologous B-LCLs. FACS analyses were routinely performed on bulk cultures of effector CTL populations in order to more clearly characterize their phenotype. Lastly, monoclonal antibody blocking studies and cold target competition assays were performed in order to accurately identify the viral antigen and MHC components responsible for target cell recognition. Our results based upon evaluation of 35 acute IM patients and 32 convalescent patients demonstrate that the virus-specific primary CTL response is broadly directed against the full spectrum of latent proteins, including EBNA1 and the viral coat glycoprotein gp350, while the memoryCTL response, which essentially lacks EBNA1 reactivity, is directed primarily against the EBNA 3 family of proteins (3A, 3B, 3C). Importantly, the immunodominant response by both primary and memory CTL was directed against the EBNA3 proteins. CTL from 7 of the 35 acute IM patients evaluated recognized EBNA1 expressing targets, and in 4 of these 7 patients, EBNA1 was an immunodominant antigen. Similarly, CTL from 7 of 35 acute IM patients recognized gp350 transfected targets, while no gp350-specific memory CTL responses were observed. While the phenotype of in-vivo primed CTL effectors were CD8+/HLA-DR+/CD11b+, the major subpopulation of memory CTL were CD8+/HLA-DR+/CD11b-. The CD11b "memory marker" reached peaked levels on the first sample day for all patients and gradually declined to baseline levels over a period of several months. In contrast, the CD11b marker was quickly shed from in vitropropogated CTL, over a period of 5-10 days. Target cell lysis by in-vivoactivated CTL was almost completely blocked by antibody directed againt [against] class-I molecules (BBM.1), whereas the effect of blocking target cell lysis by anti-CD8 mAb varied between 40-75%. These findings are consistent with an absolute need for class-I restricted antigen presentation, and imply that CD8 was variably required, likely for the lower affinity TCR/ Ag combinations. Cell lysis mediated by in-vitro-restimulated memory CTL was also largely inhibited by anti-class-I mAb, while anti-CD8 mAb was only mild/moderately effective in blocking target cell lysis, in keeping with the concept that memory CTL bear higher avidity TCR which can recognize antigen independent of CD8. Our detection of only one EBNA1-specific memory CTL response among the 32 patients tested supports the theory that latently infected B cells in-vivo, expressing only EBNA1, escape CTL recogition and thus might serve as a reservoir for viral persistence and/or reactivation. The rare ability to detect an EBNA1-specific memory CTL responses remains a relatively unexplained phenomenon and may involve a number of tolerizing mechanisms including the induction of anergy by presentation of EBNA-1 in the absence of costimulation, clonal deletion of low affinity T cells, the absence of dominant T cell epitopes within EBNA1 or a result of the recently described inhibiting properties of EBNA-1 on antigen processing and presentation. Alternatively, the absence of detectable EBNA1-specific memory CTL may be the result of insufficient or inappropriate restimulation of memory CTL in vitro. We addressed this possibility by attempting to selectively restimulate and expand EBNA1-specific CTL from acute IM patients by using EBNA1 expressing B cells blasts as a stimulus. Effector cells generated in this manner killed target cells in an MHC class-I restricted manner but were specific for an unspecified vaccinia antigen. Interestingly, the phenotype of the effector cells was predominantly CD3+/CD4-/CD8-/γδ T cells. In summary, our findings suggest that a multitude of previously unrecognized, EBV-specific CTL are present in the peripheral blood during acute IM, and include EBNA-1-specific CTL. The importance of accurately defining the in-vivo immune response to EBV is underscored by the ever-growing list of EBV associated malignancies. In addition to providing insights into the oncogenesis and potential treatment of NPC, a newly described link between precursor lesions and EBV infection raises the possibility that heightened immunity to EBV or EBV-infected cells may prevent the development of NPC. An obvious expectation would include extension of such knowledge to other EBV associated malignancies such as B and T cell lymphomas, Hodgkin's lymphomas, and smooth muscle tumors. First however, existing gaps in knowledge regarding the immune response to EBV and EBV-associated malignancies must be closed. Details about the viral gene products which are involved in stimulating a broadly protective, virus-specific immune response in a large number of individuals is fundamental to the design of an effective EBV vaccine. Since the presence of activated CD8+ T cells correlates with the rapid decline of EBV infected B cells in the peripheral blood, a concise description of the EBV-specific CTL response in the setting of acute infection will be necessary for the rational design of an effective acute IM vaccine. Increased understanding of viral escape mechanisms is also likely to contribute to therapeutic modalities to treat autoimmune disorders.
143

The CTL Memory Responses to Influenza A Viruses in Humans: a Dissertation

Jameson, Julie Marie 01 November 1999 (has links)
Influenza A virus infections are a major cause of morbidity and mortality in the United States and throughout the world. The current vaccine elicits primarily a humoral response that is specific for the external glycoproteins hemagglutinin (HA) and neuraminidase (NA). However, these are the viral proteins that are most susceptible to antigenic shift and drift, and can evade the humoral response. Cytotoxic T lymphocytes (CTL) recognize and lyse virus-infected cells and are important in clearing influenza A virus infections. CTL can recognize epitopes on both the external glycoproteins and the more conserved internal viral proteins. This thesis investigates the hypothesis that there is a broad CTL memory response in humans, and, if boosted by vaccines, these CTL may help clear influenza A virus strains of different subtypes. The CTL repertoire specific for influenza A viruses reported in inbred mice is extremely limited and has focused on a few immunodominant epitopes. We perfonned preliminary bulk culture chromium release assays using human peripheral blood mononuclear cells (PBMC) stimulated with influenza virus strain A/PR/8/34 (H1N1) in vitro. CTL activity was observed against autologous B-lymphoblastoid cell lines (B-LCL) infected with vaccinia constructs that expressed several influenza A viral proteins, including nucleoprotein (NP), matrix (M1), nonstructural 1 (NS1) and polymerase (PB1). This was more diverse than the limited response reported in inbred mice. To further characterize the CTL repertoire in humans, PBMC from healthy adult donors were stimulated and CTL were cloned by limiting dilution. Isolated cell lines were further characterized by their CD4/CD8 surface expression, histocompatibility leukocyte antigen (HLA) restriction, cross-reactive or subtype-specific influenza A subtype recognition, and epitope recognition. CTL lines isolated from three donors recognized epitopes on many different influenza virus proteins. The ELISPOT assay was used to identify the number of IFN-γ- secreting cells and determine the precursor frequency of the CTL specific for the epitopes that were mapped. The precursor frequency of IFN-γ producing CTL ranged from 1 in 4,156 PBMC to 1 in 31,250 PBMC. The precursor frequency for one epitope was below the level of detection of this assay, but most of the memory CTL were readily detected. The cross-reactive or subtype-specific recognition of various human influenza A subtypes by these T cell lines was determined by chromium release assays. Most of the CTL lines recognized B-LCL infected with any of the three influenza A subtypes that have caused epidemics in the last century (H1N1, H2N2, and H3N2) and recognized epitopes on conserved internal influenza viral proteins. Most of the subtype-specific cell lines recognized the surface HA or NA glycoproteins, which are not well conserved between influenza subtypes. Although most of the T cell lines that were characterized were cross-reactive with influenza viruses of human origin, infection of humans with a divergent swine or avian derived strain could cause a global pandemic. To study the human CTL responses to non-human influenza viruses, B-LCL were infected with an Hsw1N1 influenza A virus of swine origin, and cell lines were tested for recognition of these targets in a chromium release assay. Most cell lines lysed the targets infected With the Hsw1N1 subtype to the same degree as targets infected with the human H1N1 strain. Two influenza viruses of duck origin were also tested and were recognized by many of the cell lines. The subtypes of these duck strains were Hav1N1 and H5N2. The isolates of influenza A virus from the Hong Kong outbreak of 1997 were also used to infect targets and analyze recognition by these CTL. We found that approximately 50% of the human T cell lines tested recognized both of the Hong Kong isolates, 25% recognized at least one isolate, and 25% recognized neither isolate to the same degree as the A/PR/8/34 (H1N1) virus. We analyzed the amino acid (aa) changes in the epitopes of the T cells lines from the 25% of cell lines that did not recognize either Hong Kong virus isolate. Non-conservative mutations were found in all of the epitopes that lost recognition by the human CTL lines. Bulk cultures of PBMC from three donors that were stimulated with A/PR/8/34 (H1N1) influenza A virus of human origin recognized all of the non-human virus strains tested. Thus, humans have memory CTL that recognize influenza viruses of avian and swine species. This may provide a second line of defense against influenza infection in case of exposure to a novel influenza A virus derived from these species. These results made it clear that humans have broad CTL memory to influenza A virus. In order to determine whether these T cells could be boosted in a vaccine, immune-stimulatory complexes (Iscom) incorporating inactivated influenza particles were tested in vitro. Iscoms containing inactivated influenza A vaccine (Flu-Iscom) were used to pulse autologous B-LCL overnight that were then used as targets in chromium release assays with human CTL lines as effectors. A CD8+ HA-specific CTL line lysed these targets, but not targets pulsed with Iscoms alone or with inactivated influenza A vaccine alone. An NS1-specific cell line recognized targets pulsed with NS1 protein and Iscoms, but not targets pulsed with Iscoms or NS1 protein alone. Therefore, CTL could recognize in vitrotarget cells that were exposed to the Iscom vaccines containing their specific epitope. Flu-Iscom and Iscom mixed with inactivated influenza virus particles (Flu-Iscomatrix) were then used as vaccines in a clinical trial to test CTL and neutralizing antibody induction against influenza. Fifty-five donors were bled pre-vaccination, and on days 14 and day 56 post-vaccination. Bulk culture chromium release assays were performed using targets infected with live vaccine strain viruses. There were significantly more increases in the influenza A specific CTL activity in the PBMC of donors that were vaccinated with the Flu-Iscom and Flu-Iscomatrix vaccines than in recipients of the standard vaccine. In order to determine whether these increases in cytotoxicity were due to an increase in the precursor frequency of influenza specific CTL, the PBMC were used in ELISPOT assays to assess the changes pre-and post-vaccination. When there was an increase in the level of cytotoxicity detected in bulk culture CTL, there was often also an increase in the precursor frequency of influenza-specific CTL. Peptide-specific increases in the number of CTL that recognize epitopes such as M1 aa 58-66 were detected in several donors confirming the increase in influenza-specific CTL post-vaccination. Another type of T cell that may be involved in defense against viruses is the γδ T cell. T cells expressing the γδ T cell receptor (TCR) have been found extensively in mucosal tissues in mice and humans. Influenza A viruses enter via the airway tract, infecting the epithelial cells at the mucosal surface. These epithelial cells have been shown in vitro to be targets for influenza-specific cytolytic recognition of αβ T cells. To analyze whether γδ T cells can respond to influenza A-infected APCs, PBMC were stimulated with influenza A virus. Intracellular IFN-γ staining was used to determine whether γ/δ T cells can secrete IFN-γ in response to the influenza A virus infection. We observed an increase in the percentage of γ/δ T cells secreting IFN-γ post-influenza A virus infection of PBMC compared to uninfected or allantoic fluid-stimulated cultures. These T cells also upregulated CD25 and CD69 in response to live influenza A virus. We focused on the responses in the CD8- population of γδ T cells, which are the majority of γδ T lymphocytes. Furthermore, the increases in IFN-γ production and activation marker expression were much more clear in the CD8- γδ+ T cells. The level of CD8- γδ T cell activation with inactivated influenza A virus was much less, and in some cases no higher than uninfected PBMC. The CD8+ αβ and γδ responses could be partially blocked by anti-class I antibodies, but the CD8- γδ responses could not. Vaccinia virus infection did not activate the CD8- γδ T cells to the same degree as influenza virus infection. γδ T cells are thought to have a regulatory role that includes the secretion of cytokines and epithelial growth factors to help restore tissue back to health. Humans have broad multi-specific T lymphocyte responses by αβ T cells to influenza A viruses and those responses are cross-reactive with human, avian, and swine virus strains. These CTL can be activated in vitro and boosted in number in vivo by Iscom incorporating vaccines. There is also a population of γδ+ T lymphocytes in humans that responds to influenza virus infection by producing cytokines and becoming activated. Increasing memory CTL as a second line of defense against influenza A viruses may be important in future vaccine development.
144

The Effect of Fast Food Restaurants on Type 2 Diabetes Rates

Bailey, Grace 01 January 2018 (has links)
This paper conducts an analysis of county level data to determine the effect of fast food restaurants on type 2 diabetes rates. Due to endogeneity concerns with respect to the location of fast food restaurants, this paper follows the work of Dunn (2010) and uses the number of interstate exits in a given county to serve as an instrument for fast food restaurants. The strength of the instrument, which is theoretically and empirically tested in this paper, imposes some restraints on the interpretation of the findings. Using the Two-Stage Least Squares estimation method, I find that the presence of fast food restaurants has a positive and statistically significant effect on type 2 diabetes rates at the county level.
145

A Case-Only Genome-wide Association Study of Gender- and Age-specific Risk Markers for Childhood Leukemia

Singh, Sandeep Kumar 26 March 2015 (has links)
Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.
146

Evaluating the Toxicity and Formation of Halobenzoquinones in Point-of-Use Chlorinated Drinking Water

Hung, Stephanie 25 October 2018 (has links)
Chlorine has effectively reduced the prevalence of waterborne diseases, however there are secondary consequences to this public health advancement. Disinfection byproducts (DBPs) are chemicals formed when chlorine reacts with natural organic matter (NOM) in water. A new class of DBPs, halobenzoquinones (HBQs), has recently been identified and data suggests it could be potentially carcinogenic and up to 1000 times more toxic than some regulated DBPs. So far, in vitro studies have assessed HBQ toxicity without taking into account its transformation in cell media into potentially less toxic compounds. This study evaluated the toxic effects of one HBQ, 2,6-DCBQ, and its transformed derivatives on colon epithelial and liver hepatoma cell lines by measuring intracellular reactive oxygen species production and cell viability post-DCBQ exposure. In addition, to better quantify the trade-off between exposure to waterborne pathogens and 2,6-DCBQ, the inactivation of a virus indicator (MS2), and formation of DCBQ were determined in chlorinated surface waters. Dose-dependent toxic effects were observed in both cell lines and transformed DCBQs were observed to be less toxic than their parent compound. MS2 inactivation occurred immediately post-chlorination, but DCBQ was detected simultaneously. Such findings indicate that this compound is toxic to human cells, including colon epithelial cells, which may be pertinent due to the possible association between chlorinated waters and colon cancer. Findings also suggest this DBP may be relevant in developing countries because HBQs may form in point-of-use chlorinated drinking waters. Furthermore, observed reduction in toxicity of media-transformed DCBQs calls current literature on HBQ toxicity into question.
147

Heat Waves and Heat-Related Mortality in East Tennessee

Adesoba, Taiwo 01 August 2019 (has links)
Heat waves represent a public health challenge that requires multiple responses and warnings to protect vulnerable populations. Although studies have reported an increasing trend of heat wave occurrence in many areas of the world, no clear trend exists in East Tennessee. Using data from Parameter-elevated Relationships on Independent Slope Models (PRISM), CDC WONDER and the United States Census Bureau, the relationship between mortality rates and year was estimated during heat wave events between 1999 and 2010. Five heat wave definitions were tested. Overall, 2007 and 2010 stand out as the years with the highest number of heat wave days in East Tennessee. August could be described as the hottest month. Three of the heat wave definitions tested show increasing non-accidental mortality rates with year. The relative risk for cardiovascular mortality is elevated among females compared to males for one of the heat wave definitions (Relative Risk (RR) = 1.33, CI= 1.08-1.65).
148

The Influence of Immigrant Generation on Obesity Among Asian Americans in California from 2013 to 2014

Gong, Shaoqing, Wang, Kesheng, Li, Ying, Alamian, Arsham 22 February 2019 (has links)
Objectives We aimed to examine the association between immigrant generation and obesity among Californian adults and Asian Americans. Results Overall, 23.3% of the Asian population was obese, and 40.0% was overweight. The percentage of 1st, 2nd, and 3rd generation were 72.7%, 22.6%, and 4.6%, respectively. Overall, 1st generation of Asians had lower odds of being obese compared to Whites (OR = 0.34, 95%CI = 0.26–0.45). Multiple logistic regression analyses showed that overall, 2nd generation (OR = 1.69, 95%CI = 1.10–2.60) and 3rd generation (OR = 2.33, 95%CI = 1.29–4.22) Asians had higher odds of being obese compared to 1st generation Asians. Among Chinese, compared to the 1st generation, the 3rd generation had increased likelihood of being obese (OR = 6.29, 95%CI = 2.38–16.6). Conclusion Compared to Whites, Hispanics, and Blacks, Asian immigrants are less likely to be obese. Among Asians, 2nd and 3rd generations were more likely to be obese compared to 1st generation. The obesity rate seems to increase the longer Asian immigrants remain in the U.S.
149

Molecular and Functional Properties of Transmitted HIV-1 Envelope Variants: A Dissertation

Kishko, Michael G. 17 February 2011 (has links)
In 2008 the Nobel Prize in Physiology or Medicine was awarded to the co-discoverers of the Human Immunodeficiency Virus Type 1 (HIV-1), the causative agent of Acquired Immunodeficiency Syndrome (AIDS). This award acknowledged the enormous worldwide impact of the HIV-1/AIDS pandemic and the importance of research aimed at halting its spread. Since the syndrome was first recognized, 25 million people have succumbed to AIDS and over 33 million are currently infected with HIV-1 (www.unaids.org). The most effective strategy for ending the pandemic is the creation of a prophylactic vaccine. Yet, to date, all efforts at HIV-1 vaccine design have met with very limited success. The consistent failures of vaccine candidates stem in large part from the unprecedented diversity of HIV-1. Among the novel theories of vaccine design put forward to address this diversity is the targeted vaccine approach. This proposal is based on the finding that mucosal transmission of HIV-1, the most prevalent form, occurs across a selective bottleneck such that typically only a single (or a few) variants of the viral swarm present in a donor are passed to the recipient. While the mechanisms controlling the selection are largely unknown, the targeted vaccine approach postulates that once they are identified, we can utilize this understanding to design vaccines specifically targeted to the characteristics shared by the rare, mucosally transmissible HIV-1 variants. The studies described in this work were conducted to improve our understanding of the factors influencing viral variant selection during mother-to-child-transmission of HIV-1, a route of mucosal transmission which has globally become the leading cause of child infection. A unique panel was generated, consisting of nearly 300 HIV-1 envelope genes cloned from infected mother-infant pairs. Extensive characterization of the genotypes, phenotypes and phylogeny of these clones was then done to identify attributes differentiating early infant from maternal variants. Low genetic diversity of HIV-1 envelope variants was detected in early infant samples, suggesting a bottleneck and active selection of variants for transmission. Transmitted variants did not differ from non-transmitted variants in CD4 and CCR5 use. Infant isolates replicated poorly in macrophages; a cell subtype hypothesized to be important in the establishment of infection. The sensitivity of infant envelope variants to neutralization by a panel of monoclonal antibodies, heterologous and autologous plasmas and HIV-1 entry inhibitors varied. Most intriguingly, envelopes cloned from infants infected during delivery exhibited a faster entry phenotype than maternal isolates. Together, these findings provide further insight into viral variant selection during mother-to-child transmission. Identification of properties shared by mucosally transmitted viral variants may allow them to be selectively targeted, resulting in improved methods for preventing HIV-1 transmission.
150

A Population-Based Epidemiological Description of Socio-Demographic Characteristics and Predictors of Severity Among Hospitalized 2009 H1N1 Influenza Cases in Massachusetts: A Dissertation

Placzek, Hilary 23 February 2012 (has links)
The spread of pandemic influenza A (2009 H1N1 influenza) virus resulted in a global influenza pandemic in 2009. During the early stages of the pandemic, population surveillance was crucial. However, officials around the world realized that many of our surveillance and reporting systems were not prepared to respond in a coordinated, integrated way, which made informed public health decision-making very difficult. More accurate estimates of the total number of hospitalized 2009 H1N1 influenza cases were required to calculate population-based 2009 H1N1 influenza-associated mortality, morbidity and hospitalization rates. For instance, how many people were hospitalized with 2009 H1N1 influenza in Massachusetts? Of these, how many were admitted to the ICU and how many died? Compared to seasonal influenza, were some race/ethnic and age groups affected more than others, and what types of characteristics led to more severe manifestations of 2009 H1N1 influenza among these groups in Massachusetts? To address the above questions, I proposed a retrospective cohort study using data from the Hospital Discharge Database (HDD), which contains data for all inpatients discharged from 76 acute care hospitals in Massachusetts, as well as Census information to provide a measure of socioeconomic status (SES). My specific aims are as follows: 1. Develop methods to identify influenza cases precisely and describe characteristics of those hospitalized with ILI in MA between April 26-Sept 30, 2009; 2. Conduct analyses to identify race/ethnicity-related trends in reference to 2009 H1N1 influenza-related hospitalizations; 3. Conduct analyses to identify age-related trends in reference to 2009 H1N1 influenza-related hospitalizations. First, I established influenza case selection criteria using hospital discharge data. I addressed limitations in the published methods on defining cases of influenza using administrative databases, and evaluated ICD-9 codes that correspond with common and relatively serious respiratory infections and influenza using a ‘maximum’ and ‘minimum’ approach. Results confirmed that 2009 H1N1 influenza affected a younger population, and disproportionately affected racial minorities in Massachusetts. There were also higher rates of ICU admission compared to seasonal influenza. I then presented epidemiological data indicating race/ethnic disparity among 2009 H1N1 influenza cases in Massachusetts. I found that Hispanics had significantly lower odds of 2009 H1N1 influenza-related ICU stay. SES gradients calculated using five-digit zip code information did not account for these differences. Within race/ethnic strata, Hispanics Finally, I presented epidemiological data indicating differences among 2009 H1N1 influenza cases by age group in Massachusetts. I calculated measures of Diagnostic Cost Group (DxCG) comorbidity for the study population to provide a comorbidity measure at baseline. Main results indicate that although comorbidity scores were similar between the 2009 H1N1 influenza and seasonal influenza groups, 2009 H1N1 influenza caused more severe disease in younger age groups. This is the first study to report population-based statewide outcomes in all acute care centers in MA. In this dissertation I address challenges surrounding influenza surveillance to create case selection criteria within an administrative database. Using my case selection criteria, I then provide data related to fatality and severity of 2009 H1N1 influenza in Massachusetts in reference to sociodemographic variables such as racial/ethnicity and age groups, and provide evidence for patient-level interventions to those hardest hit by influenza. These findings provide valuable information about using large administrative databases to describe pandemic influenza cases and guide resource allocation to reduce disparities in relation to pandemic influenza preparedness.

Page generated in 0.1253 seconds