1 |
Enzyme Encapsulation, Biosensing Endocrine Disrupting Chemicals, and Bio-therapeutic Expression Platforms Using Cell-Free Protein SynthesisYang, Seung Ook 01 June 2017 (has links)
Cell-free protein synthesis (CFPS) is a powerful protein expression platform where protein synthesis machinery is borrowed from living organisms. Target proteins are synthesized in a reaction tube together with cell extract, amino acids, energy source, and DNA. This reaction is versatile, and dynamic optimizations of the reaction conditions can be performed. The "œopen" nature of CFPS makes it a compelling candidate for many technologies and applications. This dissertation reports new and innovative applications of CFPS including 1) enzyme encapsulation in a virus-like particle, 2) detection of endocrine disrupting chemicals in the presence of blood and urine, and 3) expression of a multi-disulfide bond therapeutic protein. Two major limitations of enzymes are their instability and recycling difficulty. To overcome these limitations, we report the first enzyme encapsulation in the CFPS by immobilizing in a virus-like particle using an RNA aptamer. This technique allows simple and fast enzyme production and encapsulation We demonstrate, for the first time, the Rapid Adaptable Portable In vitro Detection biosensor platform (RAPID) for detecting endocrine disrupting chemicals (EDCs) in human blood and urine samples. Current living cell-based assays can take a week to detect EDCs, but RAPID requires only 2 hours. It utilizes the versatile nature of CFPS for biosensor protein complex production and EDC detection. Biotherapeutic protein expression in E. coli suffers from inclusion body formation, insolubility, and mis-folding. Since CFPS is not restricted by a cell wall, dynamic optimization can take place during the protein synthesis process. We report the first expression of full-length tissue plasminogen activator (tPA) using CFPS. These research works demonstrate the powerful and versatile nature of the CFPS.
|
2 |
Synthese funktionalisierter Polymersome mit einstellbarer pH-Responsivität und Charakterisierung ihrer MembraneigenschaftenGumz, Hannes 14 March 2018 (has links) (PDF)
Die Übertragung der amphiphilen Grundbausteine der Liposome in die Welt der Polymere führte zu Blockcopolymeren, welche sogenannte Polymersome bilden können. Die synthetische Herkunft der Polymere ermöglicht es, eine Vielzahl von verschiedenen chemischen Funktionalitäten einzubringen. Anwendungen von Polymersomen werden vor allem als Wirkstoffträgersystem oder im Bereich der synthetischen Biologie als Nanoreaktoren oder künstliche Zellorganellen ausgemacht.
In vielen Fällen wird dabei eine Schaltbarkeit oder Responsivität der Vesikel gegenüber äußerer Stimuli benötigt. Als nächste Stufe der Komplexizität können die responsiven, »smarten« Polymersome innerhalb ihrer Membran quervernetzt werden, wodurch es möglich wird, den Durchmesser und die Membranpermeabilität der Vesikel reversibel hin- und herzuschalten. Diese Arbeit baut dabei auf pH-responsiven Polymersomen auf, welche durch photochemische Reaktionen vernetzt werden.
Dabei soll zunächst der Frage nachgegangen werden, an welchem pH Wert genau der Übergang von kollabierten zu gequollenen Vesikeln erfolgt und wie sich dieser »kritischer pH« (pH*) verändern und einstellen lässt. Neben der Herstellung von maßgeschneiderten Polymersomen ist aber auch die detaillierte Charakterisierung ihrer Membraneigenschaften unabdingbar, wofür die Titration mit Fluoreszenz-Sonden eingesetzt wurde. Darüber hinaus wurden Enzyme in die Vesikel eingekapselt wobei die neuartige Methode der post-Verkapselung untersucht wurde.
|
3 |
Synthese funktionalisierter Polymersome mit einstellbarer pH-Responsivität und Charakterisierung ihrer MembraneigenschaftenGumz, Hannes 06 March 2018 (has links)
Die Übertragung der amphiphilen Grundbausteine der Liposome in die Welt der Polymere führte zu Blockcopolymeren, welche sogenannte Polymersome bilden können. Die synthetische Herkunft der Polymere ermöglicht es, eine Vielzahl von verschiedenen chemischen Funktionalitäten einzubringen. Anwendungen von Polymersomen werden vor allem als Wirkstoffträgersystem oder im Bereich der synthetischen Biologie als Nanoreaktoren oder künstliche Zellorganellen ausgemacht.
In vielen Fällen wird dabei eine Schaltbarkeit oder Responsivität der Vesikel gegenüber äußerer Stimuli benötigt. Als nächste Stufe der Komplexizität können die responsiven, »smarten« Polymersome innerhalb ihrer Membran quervernetzt werden, wodurch es möglich wird, den Durchmesser und die Membranpermeabilität der Vesikel reversibel hin- und herzuschalten. Diese Arbeit baut dabei auf pH-responsiven Polymersomen auf, welche durch photochemische Reaktionen vernetzt werden.
Dabei soll zunächst der Frage nachgegangen werden, an welchem pH Wert genau der Übergang von kollabierten zu gequollenen Vesikeln erfolgt und wie sich dieser »kritischer pH« (pH*) verändern und einstellen lässt. Neben der Herstellung von maßgeschneiderten Polymersomen ist aber auch die detaillierte Charakterisierung ihrer Membraneigenschaften unabdingbar, wofür die Titration mit Fluoreszenz-Sonden eingesetzt wurde. Darüber hinaus wurden Enzyme in die Vesikel eingekapselt wobei die neuartige Methode der post-Verkapselung untersucht wurde.
|
Page generated in 0.0796 seconds