• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Halogenation Activity of Mammalian Heme Peroxidases

Arnhold, Jürgen, Malle, Ernst 09 June 2023 (has links)
Mammalian heme peroxidases are fascinating due to their unique peculiarity of oxidizing (pseudo)halides under physiologically relevant conditions. These proteins are able either to incorporate oxidized halides into substrates adjacent to the active site or to generate different oxidized (pseudo)halogenated species, which can take part in multiple (pseudo)halogenation and oxidation reactions with cell and tissue constituents. The present article reviews basic biochemical and redox mechanisms of (pseudo)halogenation activity as well as the physiological role of heme peroxidases. Thyroid peroxidase and peroxidasin are key enzymes for thyroid hormone synthesis and the formation of functional cross-links in collagen IV during basement membrane formation. Special attention is directed to the properties, enzymatic mechanisms, and resulting (pseudo)halogenated products of the immunologically relevant proteins such as myeloperoxidase, eosinophil peroxidase, and lactoperoxidase. The potential role of the (pseudo)halogenated products (hypochlorous acid, hypobromous acid, hypothiocyanite, and cyanate) of these three heme peroxidases is further discussed
2

Detection of the halogenating activity of heme peroxidases in leukocytes by aminophenyl fluorescein

Flemmig, Jörg, Remmler, Johannes, Zschaler, Josefin, Arnhold, Jürgen 14 April 2016 (has links) (PDF)
The formation of hypochlorous and hypobromous acids by heme peroxidases is a key property of certain immune cells. These products are not only involved in defense against pathogenic microorganisms and in regulation of inflammatory processes, but contribute also to tissue damage in certain pathologies. After a short introduction about experimental approaches for the assessment of the halogenating activity in vitro and in cell suspensions, we are focusing on novel applications of fluorescent dye systems to detect the formation of hypochlorous acid (HOCl) in leukocytes. Special attention is directed to properties and applications of the non-fluorescent dye aminophenyl fluorescein that is converted by HOCl, HOBr, and other strong oxidants to fluorescein. This dye allows the detection of the halogenating activity in samples containing free myeloperoxidase and eosinophil peroxidase as well as in intact granulocytes using fluorescence spectroscopy and flow cytometry, respectively.
3

Detection of the halogenating activity of heme peroxidases in leukocytes by aminophenyl fluorescein

Flemmig, Jörg, Remmler, Johannes, Zschaler, Josefin, Arnhold, Jürgen January 2015 (has links)
The formation of hypochlorous and hypobromous acids by heme peroxidases is a key property of certain immune cells. These products are not only involved in defense against pathogenic microorganisms and in regulation of inflammatory processes, but contribute also to tissue damage in certain pathologies. After a short introduction about experimental approaches for the assessment of the halogenating activity in vitro and in cell suspensions, we are focusing on novel applications of fluorescent dye systems to detect the formation of hypochlorous acid (HOCl) in leukocytes. Special attention is directed to properties and applications of the non-fluorescent dye aminophenyl fluorescein that is converted by HOCl, HOBr, and other strong oxidants to fluorescein. This dye allows the detection of the halogenating activity in samples containing free myeloperoxidase and eosinophil peroxidase as well as in intact granulocytes using fluorescence spectroscopy and flow cytometry, respectively.

Page generated in 0.102 seconds