Spelling suggestions: "subject:"epigenetic""
21 |
Defining a Registry of Candidate Regulatory Elements to Interpret Disease Associated Genetic VariationMoore, Jill E. 10 October 2017 (has links)
Over the last decade there has been a great effort to annotate noncoding regions of the genome, particularly those that regulate gene expression. These regulatory elements contain binding sites for transcription factors (TF), which interact with one another and transcriptional machinery to initiate, enhance, or repress gene expression. The Encyclopedia of DNA Elements (ENCODE) consortium has generated thousands of epigenomic datasets, such as DNase-seq and ChIP-seq experiments, with the goal of defining such regions. By integrating these assays, we developed the Registry of candidate Regulatory Elements (cREs), a collection of putative regulatory regions across human and mouse. In total, we identified over 1.3M human and 400k mouse cREs each annotated with cell-type specific signatures (e.g. promoter-like, enhancer-like) in over 400 human and 100 mouse biosamples. We then demonstrated the biological utility of these regions by analyzing cell type enrichments for genetic variants reported by genome wide association studies (GWAS). To search and visualize these cREs, we developed the online database SCREEN (search candidate regulatory elements by ENCODE). After defining cREs, we next sought to determine their potential gene targets. To compare target gene prediction methods, we developed a comprehensive benchmark of enhancer-gene links by curating ChIA-PET, Hi-C and eQTL datasets. We then used this benchmark to evaluate unsupervised linking approaches such as the correlation of epigenomic signal. We determined that these methods have low overall performance and do not outperform simply selecting the closest gene. We then developed a supervised Random Forest model which had notably better performance than unsupervised methods. We demonstrated that this model can be applied across cell types and can be used to predict target genes for GWAS associated variants. Finally, we used the registry of cREs to annotate variants associated with psychiatric disorders. We found that these "psych SNPs" are enriched in cREs active in brain tissue and likely target genes involved in neural development pathways. We also demonstrated that psych SNPs overlap binding sites for TFs involved in neural and immune pathways. Finally, by identifying psych SNPs with allele imbalance in chromatin accessibility, we highlighted specific cases of psych SNPs altering TF binding motifs resulting in the disruption of TF binding. Overall, we demonstrated our collection of putative regulatory regions, the Registry of cREs, can be used to understand the potential biological function of noncoding variation and develop hypotheses for future testing.
|
22 |
Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders: Review ArticleBölicke, Nora, Albert, Mareike 22 February 2024 (has links)
The neocortex is considered the seat of higher cognitive function in humans. It develops from a sheet of neural progenitor cells, most of which eventually give rise to neurons. This process of cell fate determination is controlled by precise temporal and spatial gene expression patterns that in turn are affected by epigenetic mechanisms including Polycomb group (PcG) regulation. PcG proteins assemble in multiprotein complexes and catalyze repressive posttranslational histone modifications. Their association with neurodevelopmental disease and various types of cancer of the central nervous system, as well as observations in mouse models, has implicated these epigenetic modifiers in controlling various stages of cortex development. The precise mechanisms conveying PcG-associated transcriptional repression remain incompletely understood and are an active field of research. PcG activity appears to be highly context-specific, raising the question of species-specific differences in the regulation of neural stem and progenitor regulation. In this review, we will discuss our growing understanding of how PcG regulation affects human cortex development, based on studies in murine model systems, but focusing mostly on findings obtained from examining impaired PcG activity in the context of human neurodevelopmental disorders and cancer. Furthermore, we will highlight relevant experimental approaches for functional investigations of PcG regulation in human cortex development.
|
23 |
Microfluidics for low input epigenomic analysis and application to oncology and brain neuroscienceLiu, Zhengzhi 07 September 2023 (has links)
Microfluidics is a versatile tool with many applications in biology. Its ability to manipulate small volumes of liquid precisely has led to the development of many microfluidic assay platforms. They could handle small amounts of samples and carry out analysis with high sensitivity and throughput. Microfluidic assays have provided new insights into scarce biological samples at higher resolution. In this thesis, we developed microfluidic tools to conduct low input ChIP-seq and ChIRP-seq. We applied them to a variety of samples profiling different targets. The native MOWChIP-seq platform was developed to map RNA polymerase II, transcription factors and histone deacetylase binding in 1,000-50,000 cells. We examined mouse prefrontal cortex and cerebellum using this technology. We found extensive differences that correlated with distinct neurological functions of the brain regions. The same platform and workflow were used to profile five key histone modifications in human lung tumor and normal tissue samples. Integrative analysis with gene expression data revealed extensive chromatin remodeling in lung tumor. Spatial histone modification mapping was conducted in mouse neocortex in a similar fashion. We generated an epigenomic tomography that demonstrated the molecular state of the brain in 3D. Lastly, we developed a microfluidic version of the ChIRP-seq process which successfully conducted the assay using only 500K cells. This improvement makes ChIRP-seq in tissue samples feasible. / Doctor of Philosophy / Microfluidics is a type of technology that can control small volumes of liquid in a miniature system. It can carry out reactions on very small scales with higher precision and sensitivity than conventional methods. Microfluidics has found many uses in the field of biology, especially dealing with samples available in limited quantities. These low input microfluidic platforms have helped researchers gain new knowledge on many complex questions. In this thesis, we developed microfluidic tools to carry out low input ChIP-seq and ChIRP-seq. These are two established techniques used to map where certain targets are located on the genome of an organism. These targets include specific chemical modifications to the wrapper protein of DNA (histone modification), proteins that take part in transcription and expression of genes (RNA polymerase II, transcription factors) and other molecules. Our nMOWChIP-seq system removed the need for fixation by chemicals. It was able to examine RNA polymerase II, transcription factors and other enzymes using 1,000-50,000 cells. Traditional ChIP-seq requires more than 10 million cells and time-consuming chemical treatment steps. Our technology greatly improved sensitivity and ease of use. We also used this platform to test five important histone modifications in human lung tumors and healthy tissues. We constructed a spatial map of histone modification in mouse brain by analyzing slices of the cortex. Finally, we developed a microfluidic version of ChIRP-seq process to map locations of long non-coding RNAs in cultured human cells. The cells needed for a successful test were reduced to 500K from 20 million of the original workflow.
|
24 |
Konektom u poruch autistického spektra / Connectome in Autism spectrum disordersHrašková, Markéta January 2019 (has links)
This theoretical thesis covers the issues of Autism Spectrum Disorders (ASD) in relation to the brain connectome research. ASD belong to the group of neurodevelopmental syndromes and are characterized by deficits in communication skills, social interaction and stereotypic behaviors. The prevalence of ASD increases, its etiopathogenesis is very likely multifactorial. Within the ASD syndrome, precise differential diagnostic algorithms are difficult to implement in the absence of objective biomarkers. Extensive neuroscientific research, including the connectome projects, might improve the diagnostic and therapeutic procedures in the field of Psychiatry, including ASD. The individual's connectome profile might well serve as a new biomarker in psychiatric diagnostic and therapeutic approaches. The brain connectome represents the net of all neuronal connections in the brain. Mapping of the connectome across all ages, in health and in disease, is the main goal of the Human Connectome Project (HCP). The first HCP data show great interindividual variability with the environmental factors playing a crucial role. Extensive neurobiology research data on mechanisms of memory support the vital role of environmental stimulation in compensating for behavioral symptoms in ASD. Applied behavior analysis (ABA) is an...
|
25 |
Regulation of the Timing of Puberty: Exploration of the Role of EpigeneticsRzeczkowska, Paulina Agnieszka 16 August 2012 (has links)
Pubertal timing displays wide, normally distributed variation in a healthy population of sexually maturing adolescents. However, like many complex traits, factors contributing to the variation are not well understood. Epigenetic regulation may contribute to some of the population variation. The role that epigenetics, specifically DNA methylation and histone acetylation, may play in regulating pubertal timing was investigated in C57BL/6 female mice: investigating whether population variation in pubertal timing among inbred mice could be explained by environmental factors; whether perturbing the epigenome using a histone deacetylase inhibitor or methyl-donor would alter pubertal timing; and examining genome-wide methylation patterns in hypothalami of early versus late maturing mice. Results demonstrate that measurable micro-environmental factors have only negligible effects on pubertal timing; pubertal timing was significantly altered by administration of epigenetic modifying agents; differences in methylation patterns are subtle. This initial evidence supports the involvement of epigenetic mechanisms in regulating pubertal timing.
|
26 |
Regulation of the Timing of Puberty: Exploration of the Role of EpigeneticsRzeczkowska, Paulina Agnieszka 16 August 2012 (has links)
Pubertal timing displays wide, normally distributed variation in a healthy population of sexually maturing adolescents. However, like many complex traits, factors contributing to the variation are not well understood. Epigenetic regulation may contribute to some of the population variation. The role that epigenetics, specifically DNA methylation and histone acetylation, may play in regulating pubertal timing was investigated in C57BL/6 female mice: investigating whether population variation in pubertal timing among inbred mice could be explained by environmental factors; whether perturbing the epigenome using a histone deacetylase inhibitor or methyl-donor would alter pubertal timing; and examining genome-wide methylation patterns in hypothalami of early versus late maturing mice. Results demonstrate that measurable micro-environmental factors have only negligible effects on pubertal timing; pubertal timing was significantly altered by administration of epigenetic modifying agents; differences in methylation patterns are subtle. This initial evidence supports the involvement of epigenetic mechanisms in regulating pubertal timing.
|
Page generated in 0.0587 seconds