• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graded InGaN Buffers for Strain Relaxation in GaN/InGaN Epilayers Grown on sapphire

Chua, Soo-Jin, Fitzgerald, Eugene A., Song, T.L. 01 1900 (has links)
Graded InGaN buffers were employed to relax the strain arising from the lattice and thermal mismatch in GaN/InGaN epilayers grown on sapphire. An enhanced strain relaxation was observed in GaN grown on a stack of five InGaN layers, each 200 nm thick with the In content increased in each layer, and with an intermediate thin GaN layer, 10 nm thick inserted between the InGaN layers, as compared to the conventional two-step growth of GaN epilayer on sapphire. The function of the intermediate layer is to progressively relax the strain and to annihilate the dislocations that build up in the InGaN layer. If the InGaN layers were graded too rapidly, more dislocations will be generated. This increases the probability of the dislocations getting entangled and thereby impeding the motion of the dislocations to relax the strain in the InGaN layer. The optimum growth conditions of the intermediate layer play a major role in promoting the suppression and filling of the V-pits in the GaN cap layer, and were empirically found to be a thin 10 nm GaN grown at 750 0°C and annealed at 1000 0°C. / Singapore-MIT Alliance (SMA)
2

Plastic Relaxation In Single InᵡGa₁₋ᵡN/GaN Epilayers Grown On Sapphire

Song, T.L., Chua, Soo-Jin, Fitzgerald, Eugene A., Chen, Peng, Tripathy, S. 01 1900 (has links)
Plastic relaxation was observed in InᵡGa₁₋ᵡN/GaN epilayers grown on c-plane sapphire substrates. The relaxation obeys the universal hyperbolic relation between the strain and the reciprocal of the layer thickness. Plastic relaxation in this material system reveals that there is no discontinuous relaxation at critical thickness and once a layer starts to relieve, it follows the same strain-thickness dependence, unconstrained by the original misfit until the material system work hardens. From x-ray diffraction calibration, the in-plane and normal relaxation constants KP0 and KN0 for the InᵡGa₁₋ᵡN/GaN grown on sapphire were found to be −0.98 ± 0.03 and +0.51 ± 0.03 nm, respectively. / Singapore-MIT Alliance (SMA)
3

Group III-Nitride Epi And Nanostructures On Si(111) By Molecular Beam Epitaxy

Mahesh Kumar, * 12 1900 (has links) (PDF)
The present work has been focused on the growth of Group III-nitride epitaxial layers and nanostructures on Si (111) substrates by plasma-assisted molecular beam epitaxy. Silicon is regarded as a promising substrate for III-nitrides, since it is available in large quantity, at low cost and compatible to microelectronics device processing. However, three-dimensional island growth is unavoidable for the direct growth of GaN on Si (111) because of the extreme lattice and thermal expansion coefficient mismatch. To overcome these difficulties, by introducing β-Si3N4 buffer layer, the yellow luminescence free GaN can be grow on Si (111) substrate. The overall research work carried out in the present study comprises of five main parts. In the first part, high quality, crack free and smooth surface of GaN and InN epilayers were grown on Si(111) substrate using the substrate nitridation process. Crystalline quality and surface roughness of the GaN and InN layers are extremely sensitive to nitridation conditions such as nitridation temperature and time. Raman and PL studies indicate that the GaN film obtained by the nitridation sequences has less tensile stress and optically good. The optical band gaps of InN are obtained between ~0.73 to 0.78 eV and the blueshift of absorption edge can be induced by background electron concentration. The higher electron concentration brings in the larger blueshift, due to a possible Burstein–Moss effect. InN epilayers were also grown on GaN/Si(111) substrate by varying the growth parameters such as indium flux, substrate temperature and RF power. In the second part, InGaN/Si, GaN/Si3N4/n-Si and InN/Si3N4/n-Si heterostructures were fabricated and temperature dependent electrical transport behaviors were studied. Current density-voltage plots (J-V-T) of InGaN/Si heterostructure revealed that the ideality factor and Schottky barrier height are temperature dependent and the incorrect values of the Richardson’s constant produced, suggests an inhomogeneous barrier at the heterostructure interface. The higher value of the ideality factor compared to the ideal value and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission rather than thermionic emission. The valence band offset of GaN/β-Si3N4/Si and InGaN/Si heterojunctions were determined by X-ray photoemission spectroscopy. InN QDs on Si(111) substrate by droplet epitaxy and S-K growth method were grown in the third part. Single-crystalline structure of InN QDs (droplet epitaxy) was verified by TEM and the chemical bonding configurations of InN QDs were examined by XPS. The interdigitated electrode pattern was created and (I-V) characteristics of InN QDs were studied in a metal–semiconductor–metal configuration in the temperature range of 80–300 K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. A systematic manipulation of the morphology, optical emission and structural properties of InN/Si (111) QDs (S-K method) is demonstrated by changing the growth kinetics parameters such as flux rate and growth time. The growth kinetics of the QDs has been studied through the scaling method and observed that the distribution of dot sizes, for samples grown under varying conditions, has followed the scaling function. In the fourth part, InN nanorods (NRs) were grown on Si(111) and current transport properties of NRs/Si heterojunctions were studied. The rapid rise and decay of infrared on/off characteristics of InN NRs/Si heterojunction indicate that the device is highly sensitive to the IR light. Self-aligned GaN nanodots were grown on semi-insulating Si(111) substrate. The interdigitated electrode pattern was created on nanodots using photolithography and dark as well as UV photocurrent were studied. Surface band gaps of InN QDs were estimated from scanning tunneling spectroscopy (STS) I-V curves in the last part. It is found that band gap is strongly dependent on the size of InN QDs. The observed size-dependent STS band gap energy blueshifts as the QD’s diameter or height was reduced.
4

Optical, structural, and transport properties of InN, In[subscript]xGa[subscript]1-xN alloys grown by metalorganic chemical vapor deposition

Khan, Neelam January 1900 (has links)
Doctor of Philosophy / Department of Physics / Hongxing Jiang / InGaN based, blue and green light emitting diodes (LEDs) have been successfully produced over the past decade. But the progress of these LEDs is often limited by the fundamental problems of InGaN such as differences in lattice constants, thermal expansion coefficients and physical properties between InN and GaN. This difficulty could be addressed by studying pure InN and In[subscript]xGa[subscript]1-xN alloys. In this context Ga-rich In[subscript]xGa[subscript]1-xN (x≤ 0.4) epilayers were grown by metal organic chemical vapor deposition (MOCVD). X-ray diffraction (XRD) measurements showed In[subscript]xGa[subscript]1-xN films with x= 0.37 had single phase. Phase separation occurred for x ~ 0.4. To understand the issue of phase separation in Ga-rich In[subscript]xGa[subscript]1-xN, studies on growth of pure InN and In-rich In[subscript]xGa[subscript]1-xN alloys were carried out. InN and In-rich In[subscript]xGa[subscript]1-xN (x~0.97- 0.40) epilayers were grown on AlN/Al[subscript]2O[subscript]3 templates. A Hall mobility of 1400 cm[superscript]2/Vs with a carrier concentration of 7x1018cm[superscript]-3 was observed for InN epilayers grown on AlN templates. Photoluminescence (PL)emission spectra revealed a band to band emission peak at ~0.75 eV for InN. This peak shifted to 1.15 eV when In content was varied from 1.0 to 0.63 in In-rich In[subscript]xGa[subscript]1-xN epilayers. After growth parameter optimization of In- rich In[subscript]xGa[subscript]1-xN alloys with (x= 0.97-0.40) were successfully grown without phase separation. Effects of Mg doping on the PL properties of InN epilayers grown on GaN/Al[subscript]2O[subscript]3 templates were investigated. An emission line at ~ 0.76 eV, which was absent in undoped InN epilayers and was about 60 meV below the band edge emission peak at ~ 0.82 eV, was observed to be the dominant emission in Mg-doped InN epilayers. PL peak position and the temperature dependent emission intensity corroborated each other and suggested that Mg acceptor level in InN is about 60 meV above the valance band maximum. Strain effects on the emission properties of InGaN/GaN multiple quantum wells (MQWs) were studied using a single blue LED wafer possessing a continuous variation in compressive strain. EL emission peak position of LEDs varies linearly with the biaxial strain; a coefficient of 19 meV/GPa, characterizes the relationship between the band gap energy and biaxial stress of In[subscript]0.2Ga[subscript]0.8N/GaN MQWs.
5

Semipolar And Nonpolar Group III-Nitride Heterostructures By Plasma-Assisted Molecular Beam Epitaxy

Rajpalke, Mohana K 07 1900 (has links) (PDF)
Group III-nitride semiconductors are well suited for the fabrication of devices including visible-ultraviolet light emitting diodes, high-temperature and high-frequency devices. The wurtzite III-nitride based heterostructures grown along polar c-direction have large internal electric fields due to discontinuities in spontaneous and piezoelectric polarizations. For optoelectronic devices, such as light-emitting diodes and laser diodes, the internal electric field is deleterious as it causes a spatial separation of electron and hole wave functions in the quantum wells, which decreases emission efficiency. Growth of GaN-based heterostructures in alternative orientations, which have reduced (semipolar) or no polarization (nonpolar) in the growth direction, has been a major area of research in the last few years. The correlation between structural, optical and transport properties of semipolar and nonpolar III-nitride would be extremely useful. The thesis focuses on the growth and characterizations of semipolar and nonpolar III-nitride heterostructures by plasma-assisted molecular beam epitaxy. Chapter 1 provides a brief introduction to the III-nitride semiconductors. The importance of semipolar and nonpolar III-nitride heterostructures over conventional polar heterostructures has been discussed. Chapter 2 deals with the descriptions of molecular beam epitaxy system and working principles of different characterization tools used in the present work. Chapter 3 addresses the molecular beam epitaxial growth of nonpolar (1 1 -2 0) and semipolar (1 1 -2 2) GaN on sapphire substrates. An in-plane orientation relationship is found to be [0 0 0 1] GaN || [-1 1 0 1] sapphire and [-1 1 0 0] GaN || [1 1 -2 0] sapphire for nonpolar GaN on r-sapphire substrates. Effect of growth temperature on structural, morphological and optical properties of nonpolar GaN has been studied. The growth temperature plays a major role in controlling crystal quality, morphology and emission properties of nonpolar a-plane GaN. The a-plane GaN shows crystalline anisotropy nature and it has reduced with increase in the growth temperature. The surface roughness was found to decrease with increase in growth temperature and film grown at 760°C shows reasonably smooth surface with roughness 3.05 nm. Room temperature photoluminescence spectra show near band emission peak at 3.434 -3.442 eV. The film grown at 800 ºC shows broad yellow luminescence peak at 2.2 eV. Low temperature photoluminescence spectra show near band emission at 3.483 eV along with defect related emissions. Raman spectra exhibit blue shift due to compressive strain in the film. An in-plane orientation relationship is found to be [1 -1 00] GaN || [1 2-1 0] sapphire and [-1 -1 2 3] GaN || [0 0 0 1] sapphire for semipolar GaN on m-plane sapphire substrates. The surface morphology of semipolar GaN film is found to be reasonably smooth with pits on the surface. Room temperature photoluminescence shows the near band emission (NBE) at 3.432 eV, which is slightly blue shifted compared to the bulk GaN. The Raman E2 (high) peak position observed at 569.1 cm1. Chapter 4 deals with the fabrication and characterizations of Au/nonpolar and Au/semipolar GaN schottky diodes. The temperature-dependent current–voltage measurements have been used to determine the current mechanisms in Schottky diodes fabricated on nonpolar a-plane GaN and semipolar GaN epilayers. The barrier height (φb) and ideally factor (η) estimated from the thermionic emission model are found to be temperature dependent in nature indicate the deviations from the thermionic emission (TE) transport mechanism. Low temperature I-V characteristics of Au/ GaN Schottky diode show temperature independent tunnelling parameter. Barrier heights calculated from XPS are found to be 0.96 eV and 1.13 eV for Au/nonpolar GaN and Au/semipolar GaN respectively. Chapter 5 demonstrates the growth of InN on r-sapphire substrates with and without GaN buffer layer. InN film and nanostructures are grown on r-sapphire without GaN buffer layer and they are highly oriented along (0002) direction. The electron microscopy study confirms the nanostructures are vertically aligned and highly oriented along the (0001) direction. The Raman studies of InN nanostructures show the SO modes along with the other possible Raman modes. The band gap of InN nanostructures is found to be 0.82 eV. InN grown with a-plane GaN buffer shows nonpolar orientated growth. Growth temperature dependent studies of nonpolar a-plane InN epilayers are carried out. The valence band offset value is calculated to be 1.31 eV for nonpolar a-plane InN/GaN heterojunctions. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 1.41 eV. Chapter 6 deals with the temperature dependent I-V characteristics of the nonpolar a-plane (1 1 -2 0) InN/GaN heterostructures. The measured values of barrier height and ideality factor from the TE model show the temperature dependent variation. The double Gaussian distribution has mean barrier height values ( ϕb ) of 1.17 and 0.69 eV with standard deviation (σs ) of 0.17 and 0.098 V, respectively. The modified Richardson plot ln (Is/T2)-q2σ2/2k2T2 ) versus q/kT in the temperature range of 350 – 500 K, yielded the Richardson constant of 19.5 A/cm2 K2 which is very close to the theoretical value of 24 A/cm2 K2 for n-type GaN. The tunneling parameters E0 found to be temperature independent at low temperature range (150 –300 K). Chapter 7 concludes with the summary of present investigations and the scope for future work.

Page generated in 0.0507 seconds