• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evidence for partial epithelial-to-mesenchymal transition and recruitment of motile blastoderm edge cells during avian epiboly

Futterman, Matthew 06 June 2011 (has links)
Embryonic epiboly has become an important developmental model for studying the mechanisms underlying collective movements of epithelial cells. In the last couple of decades, most studies of epiboly have utilized Xenopus or zebrafish as genetically tractable model organisms, while the avian epiboly model has received virtually no attention. Here, we re-visit epiboly in quail embryos and characterize several molecular markers of epithelial-to-mesenchymal transition (EMT) in the inner zone of the extraembryonic Area Opaca and at the blastoderm edge. Our results show that the intermediate filament vimentin, a widely-used marker of the mesenchymal phenotype, is strongly expressed in the edge cells compared to the cells in the inner zone, and that epiboly is inhibited when embryos are treated with Withaferin-A, a vimentin-targeting drug. Laminin, an extracellular matrix protein that is a major structural and adhesive component of the epiblast basement membrane, is notably absent from the blastoderm edge, and shows three distinct morphological regions approaching the leading edge. While these expression profiles are consistent with a mesenchymal phenotype, several other epithelial markers, including cytokeratin, β-catenin, and E-cadherin, were present in the blastoderm edge cells. Moreover, the results of a BrDU proliferation assay suggest that expansion of the edge cell population is primarily due to recruitment of cells from the inner zone, and not proliferation. Taken together, our data suggest that the edge cells of the avian blastoderm have characteristics of both epithelial and mesenchymal cells, and could serve as an in-vivo model for cancer and wound healing studies.

Page generated in 0.0221 seconds