11 |
Failure Analysis Of Glass, Carbon Or Kevlar Fibre Reinforced Epoxy Based Composites In Static Loading ConditionsKrishnan, Padmanabhan 02 1900 (has links) (PDF)
No description available.
|
12 |
Fatigue Damage Characterization Of Carbon/Epoxy Laminates Under Spectrum LoadingSudha, J 01 1900 (has links) (PDF)
Fibre Reinforced Polymer Composites are extensively used in aircraft structures because of its high specific stiffness, high specific strength and tailorability. Though Fibre Reinforced Polymers offer many advantages, they are not free from problems. The damage of different nature, e.g., service mechanical damages, fatigue damage or environmental damage can be observed during operating conditions. Among all the damages, manufacturing or service induced, delamination related damage is the most important failure mechanisms of aircraft-composite structures and can be detrimental for safety. Delamination growth under fatigue loading may take place due to local buckling, growth from free edges and notches such as holes, growth from ply-drops and impact damaged composites containing considerable delamination. Delamination growth can also occur due to interlaminar stresses, which can arise in complex structures due to unanticipated loading.
The complex nature of composite failure, involving different failure modes and their interactions, makes it necessary to characterize/identify the relevant parameters for fatigue damage resistance, accumulation and life prediction. An effort has been made in this thesis to understand the fatigue behavior of carbon fibre reinforced epoxy laminates under aircraft wing service loading conditions. The study was made on laminates with different lay-up sequences (quasi-isotropic and fibre dominated) and different geometries (plain specimen, specimen with a hole and ply-drop specimen).
The fatigue behaviour of the composite was analyzed by following methods:
. Ultrasonic C-Scan was used to characterize the delamination growth.
. Dynamic Mechanical Analysis (DMA) was done to study the interfacial degradation due to fatigue loading. In this analysis, the interfacial strength indicator and interfacial damping were calculated. The DMA also provides the storage modulus degradation under fatigue loading.
. Scanning electron microscope examination was carried out to understand the fatigue damage mechanisms.
. A semi-empirical phenomenological model was also used to estimate the residual fatigue life.
This research work reveals that the Carbon Fibre Reinforced Polymer laminates are in the safe limit under service loading conditions, except the specimen with a hole. The specimen with a hole showed delaminations around the hole due to stress concentration and higher interlaminar stresses at the hole edges and this delamination is found to be associated with fibre breakage and fibre pullout. The quasi-isotropic laminate is found to show poorer fatigue behaviour when compared to fibre dominated laminate and ply-drop also shows poor performance due to high stress concentration in the ply-drop region.
|
13 |
Development of an epoxy mixed-matrix composite system using an ionic liquid-based coordination polymerJadhav, Sainath Ashok 14 November 2022 (has links)
No description available.
|
14 |
ELECTROSPINNING OF NOVEL EPOXY-CNT NANOFIBERS: FABRICATION, CHARACTERIZATION AND MACHINE LEARNING BASED OPTIMIZATIONPias Kumar Biswas (16553136) 17 July 2023 (has links)
<p>This investigation delineates the optimal synthesis and characterization of innovative epoxy-carbon nanotube (CNT) nanocomposite filaments via electrospinning. Electrospinning thermosetting materials such as epoxy resins presents significant challenges due to the polycationic behavior arising from intermolecular noncovalent interactions between epoxide and hydroxyl groups, resulting in a substantial increase in solution surface tension. In this study, electrospinning submicron epoxy filaments was achieved through partial curing of epoxy via a thermal treatment process in an organic polar solvent, circumventing the necessity for plasticizers or thermoplastic binders. The filament diameter can be modulated to as low as 100 nm by adjusting electrospinning parameters.</p>
<p><br></p>
<p>Integrating a minimal amount of CNT into the epoxy matrix yielded enhanced structural, electrical, and thermal stability. The CNTs were aligned within the epoxy filaments due to the electrostatic field present during electrospinning. The modulus of the epoxy and epoxy-CNT filaments were determined to be 3.24 and 4.84 GPa, respectively, resulting in a 49% improvement. Epoxy-CNT nanofibers were directly deposited onto carbon fiber reinforced polymer (CFRP) prepreg layers, yielding augmented adhesion, interfacial bonding, and significant mechanical property enhancements. The interlaminar shear strength (ILSS) and fatigue resistance demonstrated a 29% and 27% increase, respectively, under intense stress conditions. Up to 45% of the Barely Visible Impact Damage (BVID) energy absorption was increased. In addition, the strategic incorporation of CNT (multi-walled) networks between the layers of CFRP resulted in a significant increase in thermal and electrical conductivities.</p>
<p>This study also introduces a scalable fabrication procedure to address large volume processing, reproducibility, accuracy, and electrospinning safety. Electric fields of the experimental multi-nozzle setups were simulated to elucidate the induced surface charges responsible for the Taylor cone formation of the epoxy-CNT solution droplet on the nozzle tips. Electrospinning parameters were subsequently optimized for the multi-nozzle system and analyzed alongside simulated data to improve stability and synthesize fibers with smaller diameters.</p>
<p><br></p>
<p>Smaller diameter epoxy-CNT nanofibers proved critical as CNTs maintained alignment within the nanofibers when compared to larger diameter nanofibers. This research examines the impact of effective parameters on the diameter of electrospun epoxy-CNT nanofibers using artificial neural networks (ANNs). Consequently, employing a genetic algorithm (GA) and Bayesian optimization (BO) methods enable accurate prediction of epoxy-CNT nanofiber diameters prior to electrospinning. The presented models could aid researchers in fabricating electrospun thermosetting and thermoplastic scaffolds with specified fiber diameters, thereby tailoring these scaffolds for specific applications.</p>
|
15 |
Etude du comportement mécanique à l’impact et en post impact de matériaux composites à fibres végétales / Study of the low velocity impact and post-impact behaviour of composite materials reinforced with plant fibresCuynet, Amélie 30 November 2018 (has links)
L'objectif du projet de thèse est d'étudier et d'analyser le comportement mécanique à l'impact et en post impact de composites à fibres végétales. Le déroulement de cette thèse nécessite : L'élaboration et la caractérisation des matériaux de l'étude : Les matériaux de l'étude seront constitués de tissus à fibres végétales (lin et/ou chanvre) imprégnées de résine thermodurcissable (de type époxyde) ou thermoplastique (de type PP ou PLA). Ceux-ci seront fabriqués sous forme de plaque par la technique d'infusion sous vide ou la technique de la thermocompression, en fonction du type de résine. La caractérisation mécanique sera effectuée à partir d'essais mécaniques statiques et d'essais d'impact avec une tour de chute (à plusieurs niveaux d'énergie). Celle-ci sera d'abord menée sur des éprouvettes modèles (non impactées et non vieillis, sans et avec renfort fibreux) puis sur des éprouvettes dégradées (impactées à chaque niveau d'énergie et vieillis en humidité et température). La caractérisation de l'endommagement : Elle permettra, à partir des analyses d'images associées aux techniques de l'émission acoustique, de localiser et d'identifier les différents mécanismes d'endommagement intervenant dans ces matériaux au cours des diverses sollicitations choisies. Cette étude conduira à définir le degré de nocivité de ces endommagements tout en associant à la démarche l'influence des paramètres microstructuraux tels que la nature du renfort fibreux et des constituants (résine et fibres). L'identification de modèles de comportement : Il s'agit de proposer une méthode d'identification des paramètres matériaux de modèles de comportement tenant compte de l'endommagement au niveau de la microstructure du matériau (résine et torons de fibres). Cette étude conduira à la mise en œuvre d'une méthode de type recalage de modèles éléments finis en utilisant les bases de données expérimentales constituées notamment des mesures de champs cinématiques. L'objectif à terme est de disposer de modèles fiables et prédictifs pour le calcul de structures de ces matériaux dans l'industrie / The purpose of this PhD project is to study and analyze the mechanical behavior during the impact and post-impact of plant-fiber based composite materials. The conduct of this thesis requires: The manufacturing and characterization of the materials involved in the study : The materials are composed of plant-fiber fabrics (flax and/or hemp) impregnated with thermosetting resin (epoxy type) or thermoplastic resin (PP or PLA). These are manufactured using the vacuum infusion process or using thermocompression, depending on the resin. The materials are plate-shaped. The mechanical characterization will be performed using static mechanical testing and impact testing with a drop tower (over several energy levels). This will be first conducted on unmodified specimens (unimpacted and unaged, with and without fiber reinforcement) then on degraded specimens (impacted with a known energy and/or aged in humidity and temperature). The characterization of damage: It will, from the analysis of the images associated to the techniques of the acoustic emission, locate and identify the various damage mechanisms that intervene in these materials during different stresses. This study will lead to define the degree of harmfulness of such damage while associating to the approach the influence of microstructural parameters such as the nature of the fiber reinforcement and the components (resin and fibers). The identification of behavioral patterns: It consists in suggesting a method to identify the material parameters of behavioral patterns while taking into account the damage level of the material's microstructure (resin and fiber strands). This study will lead to the implementation of a finite element model updating-like method using experimental databases such as kinematic field measurements. The ultimate purpose is to have reliable and predictive models in order to calculate the structures of such materials in the industry
|
16 |
Mechanochemical Reactions and Strengthening in Epoxy-Cast Aluminum Iron-Oxide MixturesFerranti, Louis, Jr. 02 November 2007 (has links)
This investigation is focused on the understanding of mechanical and chemical reaction behaviors of stoichiometric mixtures of nano- and micro-scale aluminum and hematite (Fe2O3) powders dispersed in epoxy. Epoxy-cast Al+Fe2O3 thermite composites are an example of a structural energetic material that can simultaneously release energy while providing structural strength. The structural and energetic response of this material system is investigated by characterizing the mechanical behavior under high-strain rate and shock loading conditions. The mechanical response and reaction behavior are closely interlinked through deformation characteristics. It is, therefore, desirable to understand the deformation behavior up to and beyond failure and establish the necessary stress and strain states required for initiating chemical reactions.
The composite s behavior has been altered by changing two main processing parameters; the reactants particle size and the relative volume fraction of the epoxy matrix. This study also establishes processing techniques necessary for incorporating nanometric-scale reactants into energetic material systems. The mechanochemical behavior of epoxy-cast Al+Fe2O3 composites and the influence of epoxy volume fraction have been evaluated for a variety of loading conditions over a broad range of strain rates, which include low-strain rate or quasistatic loading experiments (10-4 to 10-2 1/s), medium-strain rate Charpy and Taylor impacts (103 to 104 1/s), and high-strain rate parallel-plate impacts (105 to 106 1/s). In general, structural strength and toughness have been observed to improve as the volume fraction of epoxy decreases, regardless of the loading strain rate regime explored. Hugoniot experiments show damage occurring at approximately the same critical impact stress for compositions prepared with significantly different volume fractions of the epoxy binder phase. Additionally, Taylor impact experiments have indicated evidence for strain-induced chemical reactions, which subject the composite to large shear accompanied by temperature increase and associated softening, preceding these reactions.
Overall, the work aims to establish an understanding of the microstructural influence on mechanical behavior and chemical reactivity exhibited by epoxy-cast Al+Fe2O3 materials when exposed to high stress and high-strain loading conditions. The understanding of fundamental aspects and the results of impact experiment measurements provide information needed for the design of structural energetic materials.
|
17 |
Moisture absorption characteristics and effects on mechanical behaviour of carbon/epoxy composite : application to bonded patch repairs of composite structuresWong, King Jye 18 June 2013 (has links) (PDF)
Le travail présenté dans ce mémoire avait pour objectif d'étudier le processus de la pénétration d'eau dans les composites en carbone/époxyde dans un premier temps, et dans un deuxième temps, d'étudier l'effet de la prise en eau par ces matériaux sur les performances mécaniques des composites et leur joints collés. L'intégration de ces phénomènes physiques dans la modélisation numérique est d'une grande importance dans la prédiction de la durabilité d'une structure en composite subissant un vieillissement hygrothermique. Par conséquent, ce travail consiste non seulement en des observations expérimentales, mais aussi en des simulations numériques. Des corrélations entre les résultats obtenus permettent d'une part de mieux comprendre ce qui se passe dans un système composite avec l'assemblage collé soumis à des charges mécaniques, de l'initiation d'endommagement jusqu'à la rupture finale ; d'autre part, de valider un modèle numérique robuste dans le but de la conception et de l'optimisation. Les originalités de ce travail se situent à différents niveaux en proposant : 1. un nouveau modèle de diffusion à deux-phases permettant de mieux décrire l'effet de l'épaisseur des stratifiés sur la pénétration de l'eau; 2. un nouveau modèle RPM " Residual Property Model " afin de prévoir la dégradation des propriétés mécaniques due à la prise en eau ; 3. une nouvelle loi de traction-séparation linéaire-exponentiel pour décrire la courbe-R observée dans les essais DCB en mode I pur sur les composites stratifiés afin de les intégrer plus facilement dans les modèles numériques
|
18 |
Moisture absorption characteristics and effects on mechanical behaviour of carbon/epoxy composite : application to bonded patch repairs of composite structures / Prise en eau par composites carbone/époxy et leur effet sur le comportement mécanique : application aux réparations de structures en composite par collage de patchs externesWong, King Jye 18 June 2013 (has links)
Le travail présenté dans ce mémoire avait pour objectif d’étudier le processus de la pénétration d'eau dans les composites en carbone/époxyde dans un premier temps, et dans un deuxième temps, d’étudier l’effet de la prise en eau par ces matériaux sur les performances mécaniques des composites et leur joints collés. L'intégration de ces phénomènes physiques dans la modélisation numérique est d'une grande importance dans la prédiction de la durabilité d’une structure en composite subissant un vieillissement hygrothermique. Par conséquent, ce travail consiste non seulement en des observations expérimentales, mais aussi en des simulations numériques. Des corrélations entre les résultats obtenus permettent d’une part de mieux comprendre ce qui se passe dans un système composite avec l’assemblage collé soumis à des charges mécaniques, de l’initiation d’endommagement jusqu’à la rupture finale ; d'autre part, de valider un modèle numérique robuste dans le but de la conception et de l’optimisation. Les originalités de ce travail se situent à différents niveaux en proposant : 1. un nouveau modèle de diffusion à deux-phases permettant de mieux décrire l’effet de l’épaisseur des stratifiés sur la pénétration de l’eau; 2. un nouveau modèle RPM « Residual Property Model » afin de prévoir la dégradation des propriétés mécaniques due à la prise en eau ; 3. une nouvelle loi de traction-séparation linéaire-exponentiel pour décrire la courbe-R observée dans les essais DCB en mode I pur sur les composites stratifiés afin de les intégrer plus facilement dans les modèles numériques / Le travail présenté dans ce mémoire avait pour objectif d’étudier le processus de la pénétration d'eau dans les composites en carbone/époxyde dans un premier temps, et dans un deuxième temps, d’étudier l’effet de la prise en eau par ces matériaux sur les performances mécaniques des composites et leur joints collés. L'intégration de ces phénomènes physiques dans la modélisation numérique est d'une grande importance dans la prédiction de la durabilité d’une structure en composite subissant un vieillissement hygrothermique. Par conséquent, ce travail consiste non seulement en des observations expérimentales, mais aussi en des simulations numériques. Des corrélations entre les résultats obtenus permettent d’une part de mieux comprendre ce qui se passe dans un système composite avec l’assemblage collé soumis à des charges mécaniques, de l’initiation d’endommagement jusqu’à la rupture finale ; d'autre part, de valider un modèle numérique robuste dans le but de la conception et de l’optimisation. Les originalités de ce travail se situent à différents niveaux en proposant : 1. un nouveau modèle de diffusion à deux-phases permettant de mieux décrire l’effet de l’épaisseur des stratifiés sur la pénétration de l’eau; 2. un nouveau modèle RPM « Residual Property Model » afin de prévoir la dégradation des propriétés mécaniques due à la prise en eau ; 3. une nouvelle loi de traction-séparation linéaire-exponentiel pour décrire la courbe-R observée dans les essais DCB en mode I pur sur les composites stratifiés afin de les intégrer plus facilement dans les modèles numériques
|
19 |
Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance CompositesHetti, Mimi 13 October 2016 (has links) (PDF)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction.
Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process.
The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs.
The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.
|
20 |
Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance CompositesHetti, Mimi 16 September 2016 (has links)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction.
Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process.
The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs.
The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.:1. Introduction
2. Theoretical section
2.1. Magnetite Nanoparticles (MNPs)
2.2. Applications of MNPs
2.3. Atom transfer radical polymerization (ATRP)
2.4. Magnetic nanocomposites (MNCs)
2.5. Damage-free structural health monitoring (SHM) using MNPs
3. Objective of the work
4. Materials, methods and characterization
4.1. Materials
4.2. Methods
4.3. Formation of polymeric magnetic nanocomposites
4.4. Characterization
5. Results and discussions
5.1. Unmodified magnetite nanoparticles (Fe3O4 NPs)
5.2. Oleic acid-modified (Fe3O4–OA) NPs
5.3. PGMA-modified NPs by grafting-from approach (Fe3O4-gf-PGMA NPs)
5.4. PGMA-modified NP by grafting-to approach (Fe3O4-gt-PGMA NPs)
5.5. Comparison between grafting-from and grafting-to Fe3O4-PGMA NPs
5.6. Magnetic epoxy nanocomposites (MENCs)
5.7. Fiber-reinforced epoxy nanocomposites
6. Conclusions and outlook
7. Appendix
8. List of figures, schemes and tables
9. References
Versicherung
Erklaerung
List of publications
|
Page generated in 0.0563 seconds