• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 11
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations into 3-D reinforcements for composite materials

Wenger, Wolfgang January 1993 (has links)
No description available.
2

Mechanical characterisation of hybrid glass/carbon fibre-reinforced plastics

Kretsis, George January 1987 (has links)
No description available.
3

Toughening of epoxy carbon fibre composites using dissolvable phenoxy fibres

Wong, Doris Wai-Yin January 2013 (has links)
The aim of this study is to investigate a novel toughening approach for liquid mouldable carbon fibre/epoxy composites. The toughening mechanism is based on the use of thermoplastics for the toughening of epoxy resins in which polymer blends are formed, leading to phase separated morphologies which allows for various toughening mechanisms to take place. Instead of standard melt or solution blending, the thermoplastic in this study is introduced as solid phenoxy fibres, which are combined with dry carbon fabric preforms. These phenoxy fibres remain solid during resin infusion and dissolve when the laminates are heated and phase separation takes place before curing completed. The main benefits of this approach are that the viscosity of matrix resin remains low, which makes liquid moulding of these laminates possible. Localised and selective toughening of particular regions within a structure can also be achieved. Process time and cost can also be reduced by eliminating the polymer blending process. It was found that modification with phenoxy improved composite Mode-I interlaminar toughness significantly, with an increase of up to 10-folds for bifunctional epoxy composite and 100% for tetrafunctional epoxy composite, while tensile properties were not adversely affected. It was found that it is possible to combine the dissolvable phenoxy fibres with an undissolved aramid interleaf to improve toughness and damage properties. However, the phenoxy-epoxy systems had lowered environmental stability and degraded after hot-wet and solvent conditioning.
4

Effect of dispersion of SWCNTs on the viscoelastic and final properties of epoxy based nanocomposites

Uzunpinar, Cihan. Auad, Maria Lujan. January 2010 (has links)
Thesis--Auburn University, 2010. / Abstract. Includes bibliographic references.
5

CARBON NANOCOMPOSITE MATERIALS

PAMMI, SRI LAXMI January 2003 (has links)
No description available.
6

<p>NANOFIBER REINFORCED EPOXY COMPOSITE</p>

Hsieh, Feng-Hsu 01 September 2006 (has links)
No description available.
7

Etude d'interface entre matrice polymère et renforts à base de carbone, à l'aide d'observations multiéchelles et multimodales en microscopie électronique / Interface Study between polymer matrix and carbon-based reinforcements, using the electron microscopy in multiscale and multimodal

Liu, Yu 10 November 2017 (has links)
Cette thèse vise à étudier le comportement multiéchelle (nano-, micro- et macroscopique) des composites, basé sur une étude fine utilisant les techniques les plus modernes pour comprendre les interfaces et les quantifier. Deux séries de renforts sur une échelle micrométrique, des fibres de carbone (CF) et des matériaux à base de graphène ont été utilisées ici. Pour améliorer l'interaction entre les nanorenforts et la matrice polymère, deux voies principales ont été utilisées dans cette thèse : l'oxydation des renforts et la greffe de nanotubes de carbone sur leur surface.L'étude en elle-même a été menée à une échelle microscopique pour étudier la résistance interfaciale entre une fibre de carbone (CF) et la matrice époxy, avec des essais de traction effectués in situ dans la chambre d'un microscope à double colonne MEB-FIB (microscope électronique à balayage couplé à un faisceau d'ions focalisé). Le faisceau d'ions a été utilisé pour découper une éprouvette de traction du composite contenant à la fois de l'époxy et de la CF. Le champ de tractiona été appliqué via le nanomanipulateur et l'essai a été observé via les deux colonnes ionique et électronique (sous deux angles de vue différents) et a permis d'estimer le champ de déformation, et donc la résistance interfaciale au moment de la rupture. Une expérience similaire a été menée sur un composite où les renforts sont des nanoplaquettes de graphène.Enfin, l'étude en microscopie électronique en transmission de la région de l'interface entre l'époxy et les renforts a révélé la présence d'une interphase et a permis de mesurer son épaisseur et donner une indication de sa nature. À cette fin, une analyse EELS (spectroscopie par pertes d'énergie des électrons) a été effectuée, permettant de mesurer la densité de l'échantillon très localement (taille de sonde de l'ordre du dixième de nanomètre) en travers ou parallèlement à l'interface. Un scénario sur les modes de liaison chimique entre les deux milieux en fonction du traitement de surface utilisé permet d'expliquer la nature des interphases observées. / This thesis aims to investigate the multiscale (nano-, micro-, and macro-scopic) behavior of the composites based on a fine investigation using the most modern techniques, to understand the interfaces and to quantify them. Two series of reinforcements on a micrometer scale, carbon fibers (CFs) and graphene-based materials, were studied here. To improve the interactions between these nanofillers and the surrounding polymer matrix, two major routes were used in this thesis: the oxidation of the fillers and the grafting of carbon nanotubes on their surface.The study itself was conducted on a microscopic scale on the interfacial strength between CFs and the epoxy matrix, with tensile tests carried out in-situ in the chamber of a double-column FIB-SEM microscope (scanning electron microscope coupled to a focused ion beam). The ion beam was used to mill a thin bond-shaped tensile specimen of composite containing both an epoxy and a CF part. Thetensile stress field was applied using the nanomanipulator and the test was observed both via the ionic and the electronic columns (with two different angles of view) to estimate the strain field, hence the interfacial strength when the failure is observed. A similar experiment was led on a composite with GNPs.Finally, the transmission electron microscopy (TEM) study of the interface region between the epoxy and the graphene-based nanofillers revealed the existence of an interphase and allowed to measure its thickness and give an indication of its nature. For this purpose, an EELS (electron energy-loss spectroscopy) analysis was carried out, making it possible to measure the density of the sample very locally (probe size of the order of a tenth of a nanometer) across or parallelly to an interface. A scenario on the chemical bonding modes between the two media as a function of the surface treatment used makes it possible to explain the nature of the observed interphases.
8

The Study of a Novel Structure of Woven Continuous Carbon Fiber with High Electromagnetic Shieling

Hung, Wen-Chi 27 June 2003 (has links)
We study a novel structure employing the woven continuous carbon fiber (CCF) epoxy composite with high electromagnetic (EM) shielding. The influences of wove type, number and angle of overlapped plates upon the shielding effectiveness (SE) of wove CCF epoxy composite are investigated. The minimum SE of the single, double, and triple plain or balanced twill woven CCF composite plates were measured to be as high as 50 dB, 60 dB, and 70 dB, respectively. More than 100 dB of SE was obtained for the triple overlapped plain wove CCF composite at frequency of 0.9 GHz. The weight percentage of single CCF composite plate required for electronic application was 4.8% only, which was less than one quarter of the carbon fiber (CF) content and the performance of SE was 10 dB higher in comparison with long CF filled liquid crystal polymer composites. The SE calculated theoretically is consistent with that measured by the experiment. We have demonstrated a new woven CCF epoxy composite with high EM shielding. This work may lead to the development of effective shielding for plastic optical transceiver modules to prevent electromagnetic interference (EMI) for use in low cost and lightwave communication systems.
9

Electrical and Thermal Experimental Characterization and Modeling of Carbon Nanotube/Epoxy Composites

Gardea, Frank 2011 May 1900 (has links)
The present work investigates the effect of carbon nanotube (CNT) inclusions on the electrical and thermal conductivity of a thermoset epoxy resin. The characterization of electrical and thermal conductivity of CNT/epoxy composites is presented. Pristine, oxidized, and fluorine-functionalized unpurified CNT mixtures ("XD grade") were dispersed in an epoxy matrix, and the effect of stirring rate and pre-curing of the epoxy on the dispersion of the CNTs was evaluated. In order to characterize the dispersion of the CNTs at different length scales, Optical Microscopy (OM), Raman Spectroscopy, and Scanning Electron Microscopy (SEM) was performed. Samples of varying CNT weight fractions were fabricated in order to find the effect of CNT weight fraction on thermal and electrical conductivity. Electrical conductivity was measured using a dielectric spectrometer, and thermal conductivity was determined by a transient plane source thermal analyzer. It was found that electrical conductivity increases by orders of magnitude for the pristine and oxidized XD CNT composites relative to the neat epoxy matrix, while fluorinated XD CNT composites remain electrically non-conductive. A small, but significant, increase in thermal conductivity was observed for pristine, oxidized, and fluorinated XD CNT composites, showing a linear increase in thermal conductivity with increasing CNT weight fraction. Pristine XD CNTs were ball-milled for different times in order to reduce the degree of agglomeration and entanglement of CNTs, and composites were fabricated using the same technique as with non-milled XD CNTs. Using ball-milled CNTs shows improved dispersion but results in an electrically non-conductive composite at the CNT weight fractions tested. The thermal conductivity of the ball-milled CNT samples shows an initial increase higher than that of non-milled pristine, oxidized, and fluorinated XD CNTs, but remains constant with increasing CNT weight fraction. A micromechanics model based on the composite cylinders method was implemented to model the electrical and thermal conductivity of the CNT/epoxy composites. Nanoscale effects in electrical and thermal conduction, such as electron hopping and interface thermal resistance, respectively, were incorporated into the model in order to accurately predict the acquired results. Modeling results show good agreement with acquired experimental results.
10

Fabrication Of Epoxy Composites With CTBN And Fly Ash As Individual And Hybrid Fillers : Studies On Curing Schedule And Mechanical Properties Under Static And Dynamic Loading Conditions

Santra, Sanjitarani 01 1900 (has links) (PDF)
No description available.

Page generated in 0.0676 seconds