Spelling suggestions: "subject:"electromagnetic shielding"" "subject:"clectromagnetic shielding""
1 |
The Study of Electromagnetic Shielding Materials for Plastic Packaging in Laser ModulesCheng, Jei-Yen 04 July 2000 (has links)
Electromagnetic shielding materials for plastic packaging in laser modules application were studied experimentally. Bipheny1, Nylon and LCP mixed with Al-powder, Al-flake, carbon-fibers and steel-fibers was fabricated and measured in shielding effectiveness(SE) for EMI. Compression molding, double-screw extrusion and injection molding were used for fabrication. We examed the mechanical properties and shielding effectiveness of these compounds. The SE of conductive plastics was measured to be 40dB at 30MHz and 60dB at 1GHz for carbon-fiber and plastic mixture. The experiment result indicates that introducting conductive carbon fiber fillers into plastics will produce conductive composites having an excellent SE to reduce EMI. With these excellent SEs, such conductive carbon fiber fillers into plastics are suitable for use in low-cost laser modules.
|
2 |
The Study of Electromagnetic Shielding Efficient of cement mortar with bamboo-charcoal ingredientYen, Zih-huan 30 August 2008 (has links)
This research mainly focuses on the electromagnetic shielding effectiveness of bamboo -charcoal, using cement mortar with bamboo-charcoal ingredient replacing parts of thin aggregates weight, and then finds the feasibility of electromagnetic shielding effectiveness by using bamboo-charcoal applied to cement mortar. Experiment contains two parts, one is to use different proportions of bamboo-charcoal with replacing with thin aggregates weights( 0%¡B3%¡B5% and 7% ),and the other is to use three kinds of thickness(3mm¡B4mm and 5mm), to measure the effectiveness of electrom- agnetic shielding, and to probe into whether cement mortar with bamboo-charcoal ingredient can shield electromagnetic or not.
After researching on cement mortar with bamboo-charcoal, it can be used in civil engineering and ocean engineering, and this experiment will act on the premise which is not affecting the property of cement mortar with bamboo-charcoal, continuing using the condition of reference(Yu,2007) to probe into the electromagnetic shielding effectiveness of cement mortar with bamboo-charcoal, expecting this material can be used to domestic architecture, for protecting the health of our home environment.
|
3 |
The Study of Composite Material Package for Optical Transceiver Module with High Shielding EffectivenessLin, Cheng-Wei 08 July 2005 (has links)
We investigate the EM properties of four different type composites which are nylon and liquid-crystal polymer with carbon fiber filler composites, woven continuous carbon fiber epoxy composites(balanced twill structure, plain weave structure, uni-direction weave structure), and liquid-crystal polymer with carbon nanotubes filler composites.
By comparison of fabrication methods, cost and weight of the optical transceiver module housings, and shielding effectiveness under plane wave and near-field conditions, the woven continuous carbon fiber epoxy composites(balanced twill structure and plain weave structure) show lower cost, lighter weight, and higher EM shielding effectiveness than the other types of composites. Furthermore, they also perform good radiation susceptibility in our measurements.
For these reasons, the proposed woven continuous carbon fiber epoxy composite package for an optical transceiver is suitable for use in a low-cost light wave transmission system.
|
4 |
Conception d'un revêtement conducteur extrinsèque polymère/fils submicroniques d'argent : application à la métallisation de substrat thermodurcissable chargé fibres de carbone à finalité spatiale / Design of a polymer extrinsic conductive coating - silver nanowires : application to the metallization of thermosetting substrate filled with carbon fibers for spatial purposeDupenne, David 22 September 2017 (has links)
Ces travaux décrivent la réalisation et l'étude d'un procédé original permettant la métallisation de surface de substrats à matrice polymère chargés fibres de carbone (CFRP) par l'intermédiaire d'un revêtement polymère conducteur pour des applications de blindage électromagnétique. Ce revêtement conducteur est constitué d'une matrice polyuréthane (PU) contenant des fils submicroniques d'argent (AgNWs) obtenus par un procédé polyol. L'étude de la mobilité moléculaire de la matrice PU et de l'influence des AgNWs sur les propriétés physiques de la matrice ont été effectuées. Le revêtement PU/AgNWs présente un très faible seuil de percolation volumique et surfacique inférieur à 1 % en volume. Au-delà de ce seuil de percolation, la conductivité de surface est suffisante pour permettre l'électrodéposition. Les paramètres optimaux de l'électrodéposition ont été déterminés. Un dépôt homogène et uniforme est obtenu pour des revêtements faiblement chargés (4 %vol). La couche métallique conserve son adhérence, malgré les grandes variations thermiques, en adaptant les contraintes de dilatation. L'efficacité de blindage a été mesurée de 1 à 26 gigahertz. / This work describes the achievement and the study of an original process to permit the surface metallization of carbon fiber reinforced polymer (CFRP) substrates filled with carbon fibers through a conductive polymer coating for electromagnetic shielding applications. This conductive coating consists of a polyurethane (PU) matrix containing silver nanowires (AgNWs) obtained by a polyol process. The study of the molecular mobility of PU matrix and the influence of AgNWs on the physical properties of the matrix were carried out. The PU/AgNWs coating exhibits a very low volume and surface percolation threshold less than 1 % by volume. Above this percolation threshold, the surface conductivity allows metal electroplating. Optimal electrodeposition parameters were determined. A homogeneous and uniform deposition is obtained on the low-filled coatings (4 %vol). The metallic layer adheres to substrate for large thermal variations, by adapting the stresses of the thermal expansion. The EM shielding efficiency was measured from 1 to 26 gigahertz.
|
5 |
The Study of Electromagnetic Shielding in Plastic CompositesChiu, Shou-Kai 20 June 2001 (has links)
Abstract
Electromagnetic shielding of nylon-66 composites applied to laser modules was studied experimentally and theoretically. The effects of conductive carbon fiber length and weight percentage upon the shielding effectiveness (SE) of nylon composites were investigated. The result showed that the SE of long carbon fiber filled nylon-66 composites was found to be higher SE than short carbon fiber filled nylon-66 composites under the same weight percentage of carbon fibers. In addition, higher electromagnetic shielding was obtained for the composite with higher contents of carbon fibers at the same length. The SE of conductive carbon fiber filled nylon-66 composites was measured to be 41 dB at low frequency of 30 MHz and 59 dB at high frequency of 1.5 GHz. The results of SE predicted by the proposed theoretical model and the results measured by experiments were in good agreement with each other for carbon fibers filled nylon-66 composites of different lengths.
The effects of fiber orientation on SE of nylon and LCP composites were also investigated. The result showed that the SE of LCP composites was found to be higher than nylon composites under the same weight percentage of carbon fiber. This is due to that the fiber orientation in LCP composites attempts to keep the same direction.
|
6 |
The Study of a Novel Structure of Woven Continuous Carbon Fiber with High Electromagnetic ShielingHung, Wen-Chi 27 June 2003 (has links)
We study a novel structure employing the woven continuous carbon fiber (CCF) epoxy composite with high electromagnetic (EM) shielding. The influences of wove type, number and angle of overlapped plates upon the shielding effectiveness (SE) of wove CCF epoxy composite are investigated. The minimum SE of the single, double, and triple plain or balanced twill woven CCF composite plates were measured to be as high as 50 dB, 60 dB, and 70 dB, respectively. More than 100 dB of SE was obtained for the triple overlapped plain wove CCF composite at frequency of 0.9 GHz. The weight percentage of single CCF composite plate required for electronic application was 4.8% only, which was less than one quarter of the carbon fiber (CF) content and the performance of SE was 10 dB higher in comparison with long CF filled liquid crystal polymer composites. The SE calculated theoretically is consistent with that measured by the experiment.
We have demonstrated a new woven CCF epoxy composite with high EM shielding. This work may lead to the development of effective shielding for plastic optical transceiver modules to prevent electromagnetic interference (EMI) for use in low cost and lightwave communication systems.
|
7 |
Élaboration d’un fil nanocomposite PET-nanotubes de carbone pour le blindage électromagnétique : suivi de la microstructure induite par le procédé d’étirage et caractérisations des basses fréquences aux hyperfréquences / Fabrication of a PET-carbon nanotube nanocomposite wire for electromagnetic shielding : tracking of the microstructure induced by the drawing process and characterization from low frequencies to microwavesMichel, Morgane 07 October 2019 (has links)
Le principal objectif de cette thèse est de définir les conditions d’obtention de nanocomposites sous forme de fils de polyéthylène téréphtalate chargés dont la capacité d’absorbant hyperfréquence est exaltée dans le domaine 300 MHz à 3 GHz. Le procédé de fabrication de fil repose sur une technique d’extrusion qui a été adaptée de l’échelle industrielle vers l’échelle du laboratoire.Cet objectif principal se subdivise ainsi en plusieurs objectifs secondaires :Rationalisation et compréhension du procédé d’extrusion à l’échelle industrielle : les paramètres expérimentaux de la ligne d’extrusion ont été établis empiriquement par un industriel. Ces valeurs paramétrées de températures et de vitesses conditionnent ainsi la résistance mécanique et le diamètre du fil produit. Un des problèmes récurrents dans la plasturgie est la variabilité des lots de matière première et l’ajustement des paramètres expérimentaux qui en découlent. L’influence de chacun de ses paramètres sur les caractéristiques physico-chimiques du fil à chaque étape de la ligne est actuellement inconnue des industriels. Une compréhension de ces paramètres expérimentaux pourrait permettre un ajustement plus simple de ceux-ci en fonction des lots et une optimisation du procédé d’extrusion.Étude de l’homothétie entre la réplique miniature et la ligne d’extrusion originale : la ligne d’extrusion de laboratoire a été créée à partir du modèle de la ligne d’extrusion industrielle. Les dimensions ont ainsi été réduites et la disposition des différents éléments a été adaptée. Ce redimensionnement pose le problème de la réelle homothétie entre les deux lignes. Des critères de conformité seront ainsi établis pour permettre une comparaison entre les deux lignes.Étude de la matière polyéthylène téréphtalate : l’objectif est d’étudier les différentes transitions de phases d’un polymère semi-cristallin pouvant se produire lors du procédé d’extrusion. Les mécanismes de cristallisation et la nature des cristallites qui sont formées sont effectivement déterminants pour la tenue mécanique du fil ciblée par l’industriel.Blindage électromagnétique et permittivité diélectrique : les processus et les grandeurs physiques à l’origine de l’interaction d’une onde électromagnétique avec un matériau permettront d’aboutir aux propriétés physiques ciblées pour le blindage électromagnétique. La permittivité diélectrique et notamment la partie imaginaire relative aux pertes est une grandeur déterminante pour notre application.Nanocomposites pour le blindage électromagnétique : une étude bibliographique approfondie permettra de déterminer une liste d’additifs potentiels pour le blindage électromagnétique. Cette étude se focalisera sur les matériaux compatibles avec la nature de la matrice polymère polyéthylène téréphtalate. L’axe de recherche principal portera sur les matériaux absorbants dans la gamme des hyperfréquences.Étude du niveau de blindage électromagnétique apporté par les charges : des échantillons de polyéthylène téréphtalate vierge et chargés, sous forme de plaques, permettront de chiffrer l’efficacité de blindage électromagnétique avec un dispositif de mesure créé au laboratoire.Conception de fil conformément aux attentes de l’industriel : un des objectifs ciblés est de réussir à transposer les paramètres d’extrusion de fil de polyéthylène téréphtalate à un fil de nanocomposite chargé. Ceci passera par une étude complète des caractéristiques physico-chimiques et des mécanismes de cristallisation.Enfin, un des objectifs ciblés par cette thèse est de proposer aux industriels une technique d’analyse fiable, simple et rapide pour caractériser et identifier leurs produits. / The main objective of this thesis is to define the conditions for manufacturing a nanocomposites in the form of charged polyethylene terephthalate wires suitable for an electromagnetic shielding. The wire manufacturing process is based on an extrusion technique that has been adapted from the industrial scale to the laboratory scale.This main objective of this study is then subdivided into several secondary objectives:Rationalization and understanding of the extrusion process on an industrial scale: the experimental parameters of the extrusion line were established empirically by an industrialist. These parameterized values of temperatures and drawing rates thus condition the mechanical strength and the diameter of the wire produced. One of the recurring problems in the plastics industry is the variability of batches of raw material and the adjustment of experimental parameters that results. The influence of each of its parameters on the physicochemical characteristics of the wire at each step of the line is currently unknown to industrialists. An understanding of these experimental parameters could lead to a simpler adjustment of these parameter and to an optimization of the extrusion process.Study of the homothety between the miniature replica and the original extrusion line: the laboratory extrusion line was created from the model of the industrial extrusion line. The dimensions have been reduced and the layout of the various elements has been adapted. This resizing poses the problem of the real homothety between the two lines. Compliance criteria will be established to allow a comparison between the two lines.Study of the polyethylene terephthalate material: the objective is to study the different phase transitions of a semicrystalline polymer that may occur during the extrusion process. The crystallization mechanisms and the nature of the crystallites that are formed are indeed determining for the mechanical strength of the yarn targeted by the manufacturer.Electromagnetic shielding and dielectric permittivity: the processes and the physical quantities at the origin of the interaction of an electromagnetic wave with a material will lead to the targeted physical properties for the electromagnetic shielding. The dielectric permittivity and in particular the imaginary part relating to losses is a determining variable for our application.Nanocomposites for Electromagnetic Shielding: An in-depth literature review will determine a list of potential additives for electromagnetic shielding. This study will focus on materials compatible with the nature of the polyethylene terephthalate polymer matrix. The main research focus will be on absorbent materials in the microwave range.Study of the level of electromagnetic shielding provided by the charges: samples of raw polyethylene terephthalate and loaded, in the form of plates, will be used to quantify the electromagnetic shielding effectiveness with a measurement device created in the laboratory.Wire manufacturing at the laboratory scale : one of the targeted objectives is to successfully transpose the extrusion parameters of polyethylene terephthalate wire to a loaded nanocomposite wire. This will go through a complete study of physicochemical characteristics and crystallization mechanisms.Finally, one of the objectives targeted by this thesis is to offer manufacturers a reliable, simple and fast analysis technique to characterize and identify their products.
|
8 |
Flexible and 3D printable conductive composites for pressure sensor applicationsBertolini, Mayara Cristina 16 December 2022 (has links)
O objetivo deste estudo foi o desenvolvimento de compósitos poliméricos flexíveis e altamente condutores elétricos preparados por moldagem por compressão e por fabricação de filamentos fundidos (FFF) para possíveis aplicações como materiais piezoresistivos ou piezoelétricos para sensores de compressão. Compósitos baseados em misturas de poli(fluoreto de vinilideno)/poliuretano termoplástico (PVDF/TPU) como matriz e contendo várias frações de negro de fumo-polipirrol (CB-PPy) como aditivo condutor foram preparados. Diversas técnicas de caracterização foram realizadas para avaliar as propriedades mecânicas, térmicas, químicas e elétricas, morfologia e printabilidade dos materiais investigados.
Primeiro, blendas de PVDF/TPU com diferentes composições foram produzidas por mistura por fusão seguida de moldagem por compressão. Os resultados mostraram que a flexibilidade desejada para os materiais foi melhorada com a adição de TPU aos compósitos de PVDF. As imagens SEM evidenciaram a obtenção de uma blenda co-contínua com 50/50 vol% de PVDF/TPU. As blendas compostas de PVDF/TPU 38/62 vol% e a blenda co-contínua de PVDF/TPU 50/50 vol% foram selecionadas como matrizes para a preparação de compósitos moldados por compressão e impressos em 3D a fim de alcançar uma ótima combinação entre condutividade, propriedades mecânicas e printabilidade.
Várias quantidades de negro de fumo-polipirrol, de 0 a 15%, foram adicionadas às blendas selecionadas para aumentar a condutividade elétrica dos compósitos e possivelmente atuar como agente nucleante para a fase cristalina do PVDF a fim de aumentar sua resposta piezoelétrica. A adição de CB-PPy aumentou a condutividade elétrica de todos os compósitos. No entanto, a condutividade elétrica dos compósitos baseados em blendas co-contínuas PVDF/TPU 50/50 vol% foi maior do que as encontradas para os compósitos de PVDF/TPU 38/62 vol% com mesma concentração de aditivo. De fato, o limiar de percolação elétrico dos compósitos com blenda co-contínua foi de 2%, enquanto o limiar de percolação elétrico dos compósitos compostos da blenda não contínua foi de 5%. Com relação às propriedades mecânicas, a incorporação do aditivo condutor nas blendas resultou em materiais mais rígidos com maior módulo de elasticidade, menor alongamento na ruptura e maior módulo de armazenamento. O módulo de armazenamento (G') e a viscosidade complexa (η*) dos compósitos aumentaram com a adição de CB-PPy. O limiar de percolação reológico foi de 3% para PVDF/TPU/CB-PPy 38/62 vol% e 1% para PVDF/TPU/CB-PPy 50/50 vol%, indicando que uma quantidade maior de carga poderia comprometer a processabilidade dos compósitos. A adição de CB-PPy também resultou na redução dos valores de Tg e Tm dos compósitos devido à redução da mobilidade das cadeias poliméricas.
Com base na condutividade elétrica e no comportamento mecânico dos compósitos, três composições diferentes foram selecionadas para a extrusão de filamentos para serem posteriormente utilizados no processo de impressão 3D. No geral, as peças impressas em 3D apresentaram propriedades mecânicas e elétricas inferiores devido à presença de vazios, defeitos e camadas sobrepostas que podem dificultar o fluxo de elétrons. Os valores de condutividade elétrica dos compósitos impressos em 3D de PVDF/TPU/CB-PPy 38/62 vol% contendo 5% e 6% de CB-PPy são de uma a sete ordens de grandeza menores do que os encontrados para os compósitos com a mesma composição moldados por compressão. Mesmo que o valor da condutividade elétrica para o compósito PVDF/TPU 38/62 vol% com 6% de CB-PPy moldado por compressão foi de 1,94x10-1 S•m-1, o compósito impresso em 3D com a mesma composição mostrou um valor muito baixo de condutividade elétrica de 6,01x10-8 S•m-1. Por outro lado, o compósito co-contínuo de PVDF/TPU 50/50 vol% com 10% de aditivo impresso em 3D apresentou um alto valor de condutividade elétrica de 4,14×100 S•m-1 mesmo após o processo de impressão.
Além disso, as respostas piezoresistivas dos compósitos foram investigadas. Para os compósitos PVDF/TPU/CB-PPy 38/62 vol%, as amostras moldadas por compressão e impressas em 3D com 5% e 6% de CB-PPy exibiram boa resposta piezoresistiva. No entanto, apenas os compósitos com 6% de aditivo apresentaram valores elevados de sensibilidade e gauge factor, atuação em ampla faixa de pressão e respostas piezoresistivas reprodutíveis durante a aplicação de 100 ciclos de compressão/descompressão para ambos os métodos de fabricação. Por outro lado, para os compósitos co-contínuos de PVDF/TPU/CB-PPy apenas a amostra moldada por compressão com 5% de CB-PPy apresentou respostas piezorresistivas boas e reprodutíveis.
A cristalinidade e o teor de fase β do PVDF foram investigados para os compósitos. Embora o grau de cristalinidade das amostras tenha diminuído com a adição de CB-PPy, a porcentagem de fase β no PVDF aumentou. O coeficiente piezoelétrico d33 das amostras aumentou com a porcentagem de fase β. A adição de 6% ou mais de CB-PPy foi necessária para aumentar significativamente o coeficiente piezoelétrico (d33) dos compósitos. O conteúdo de fase β e as respostas piezoelétricas do PVDF foram menores para as amostras preparadas por FFF.
Por fim, como pesquisa colateral, a eficiência de blindagem contra interferência eletromagnética (EMI-SE) foi medida para todos os compósitos. Compósitos com maior condutividade elétrica apresentaram melhor blindagem da radiação eletromagnética. Além disso, os compósitos baseados na blenda co-contínua apresentaram maior eficiência de blindagem contra EMI do que os compósitos de PVDF/TPU 38/62 vol%. O principal mecanismo de blindagem foi a absorção para todos os compósitos. As amostras preparadas por FFF apresentaram respostas de EMI-SE menores quando comparadas às amostras moldadas por compressão. / The aim of this study was the development of flexible and highly electrically conductive polymer composites via compression molding and fused filament fabrication for possible applications as piezoresistive or piezoelectric materials for pressure sensors. Composites based on blends of poly(vinylidene fluoride)/thermoplastic polyurethane (PVDF/TPU) as matrix and containing various fractions of carbon black-polypyrrole (CB-PPy) as conductive filler were prepared. Several characterization techniques were performed in order to evaluate the mechanical, thermal, chemical and electrical properties, morphology and printability of the investigated materials. First, PVDF/TPU blends with different compositions were prepared by melt compounding followed by compression molding. The results showed that the flexibility aimed for the final materials was improved with the addition of TPU to PVDF composites. SEM images evidenced the achievement of a co-continuous blend comprising 50/50 vol% of PVDF/TPU. The blends composed of PVDF/TPU 38/62 vol% and the co-continuous blend of PVDF/TPU 50/50 vol% were selected as matrices for the preparation of compression molded and 3D printed composites in order to achieve an optimal compromise between electrical conductivity, mechanical properties and printability. Various amounts of carbon black-polypyrrole, from 0 up to 15%, were added to the selected blends in order to rise the electrical conductivity of the composites and to possible act as nucleating filler for the β crystalline phase of PVDF in order to increase its piezoelectric response. The addition of CB-PPy increased the electrical conductivity of all composites. However, the electrical conductivity of composites based on PVDF/TPU 50/50 vol% co-continuous blends was higher than those found for PVDF/TPU 38/62 vol% composites at the same filler content. Indeed, the electrical percolation threshold of the conductive co-continuous composite blends was 2%, while the electrical percolation threshold of the composites with the nonco-continuous composite blends was 5%. With respect to the mechanical properties, the incorporation of the filler into the blends leaded to more rigid materials with higher elastic modulus, lower elongation at break and higher storage modulus. The storage modulus (G’) and complex viscosity (η*) of the composites increased with the addition of CB-PPy. The rheological percolation threshold was found to be 3% for PVDF/TPU/CB-PPy 38/62 vol% and 1% for PVDF/TPU/CB-PPy 50/50 vol%, indicating that higher amount of filler could compromise the processability of the composites. The addition of CB-PPy also resulted in a reduction on the Tg and Tm values of the composites due to the reduction of the mobility of the polymeric chains. Based on the electrical conductivity and mechanical behavior of the composites, three different compositions were selected for the extrusion of filaments to be used in a 3D printing process. Overall, the 3D printed parts presented lower mechanical and electrical properties because of the presence of voids, defects and overlapping layers that can hinder the flow of electrons. The electrical conductivity values of PVDF/TPU/CB-PPy 38/62 vol% composites containing 5% and 6 wt% of CB-PPy 3D printed samples are one to seven orders of magnitude lower than those found for compression molded composites with the same composition. Even if the electrical conductivity value for PVDF/TPU 38/62 vol% compression molded composite with 6% of CB-PPy was as high as 1.94x10-1 S•m-1, the 3D printed composite with same composition showed a very low electrical conductivity of 6.01x10-8 S•m-1. On the other hand, the 3D printed co-continuous composite PVDF/TPU 50/50 vol% with 10% of filler displayed a high value of electrical conductivity of 4.14×100 S•m-1 even after the printing process. Moreover, the piezoresistive responses of the composites were investigated. For PVDF/TPU/CB-PPy 38/62 vol% composites, the compression molded and 3D printed samples with 5% and 6% of CB-PPy exhibited good piezoresistive response. However, only the composites with 6% displayed high sensitivity and gauge factor values, large pressure range and reproducible piezoresistive responses under 100 cycles for both methods. On the other hand, for PVDF/TPU/CB-PPy co-continuous composites only the compression molded sample with 5% of CB-PPy presented good and reproducible piezoresistive responses. The crystallinity and β phase content of PVDF were investigated for the composites. Althought the degree of crystallinity of the samples decreased with the addition of CB-PPy, the percentage of β phase in PVDF was increased. The piezoelectric coefficient d33 of the samples increased with the percentage of β phase. The addition of 6% or more of CB-PPy was necessary to increase significatively the piezoelectric coefficient (d33) of the composites. The β phase content and piezoelectric responses of PVDF were lower for samples prepared by FFF. Finally, as a collateral research, the electromagnetic interference shielding effectiveness (EMI-SE) were measured for all composites. Composites with higher electrical conductivity showed better shielding of the electromagnetic radiation. In addition, composites based on the co-continuous blend displayed higher EMI shielding efficiency than 38/62 vol% composites. The main mechanism of shielding was absorption for all composites. Specimens prepared by FFF displayed diminished EMI-SE responses when compared to compression molded samples. / Lo scopo di questo studio è lo sviluppo di compositi polimerici flessibili e ad elevata conducibilità elettrica tramite stampaggio a compressione e manifattura additiva (fused filament fabrication) per possibili applicazioni come materiali piezoresistivi o piezoelettrici in sensori di pressione. In particolare, sono stati preparati compositi a base di miscele di poli(vinilidene fluoruro)/poliuretano termoplastico (PVDF/TPU) come matrice e contenenti varie frazioni di nerofumo-polipirrolo (CB-PPy) come riempitivo conduttivo. Sono state utilizzate diverse tecniche di caratterizzazione al fine di valutare le proprietà meccaniche, termiche, chimiche ed elettriche, la morfologia e la stampabilità dei materiali ottenuti.
In primo luogo, miscele PVDF/TPU con diverse composizioni sono state preparate mediante mescolatura allo stato fuso seguita da stampaggio a compressione. I risultati hanno mostrato che la flessibilità del PVDF viene notevolemente migliorata dall’aggiunta di TPU. Le immagini SEM hanno evidenziato il raggiungimento di una miscela co-continua per una composizione 50/50% in volume di PVDF/TPU. Le miscele composte da PVDF/TPU 38/62 vol% e la miscela co-continua di PVDF/TPU 50/50 vol% sono state selezionate come matrici per la preparazione di compositi per stampaggio a compressione e manifattura additiva al fine di ottenere un compromesso ottimale tra conducibilità, proprietà meccaniche e stampabilità.
Alle miscele selezionate sono state aggiunte varie quantità di nerofumo-polipirrolo, dallo 0 al 15%, per aumentare la conducibilità elettrica dei compositi ed eventualmente fungere da additivo nucleante per la fase β cristallina del PVDF al fine di aumentarne la risposta piezoelettrica. L'aggiunta di CB-PPy ha aumentato la conduttività elettrica di tutti i compositi. Tuttavia, la conduttività elettrica dei compositi basati su miscele co-continue di PVDF/TPU 50/50% in volume era superiore a quella trovata per compositi PVDF/TPU 38/62% in volume con lo stesso contenuto di riempitivo. Infatti, la soglia di percolazione elettrica delle miscele conduttive era del 2%, mentre la soglia di percolazione elettrica dei compositi con miscele composite non continue era del 5%. Per quanto riguarda le proprietà meccaniche, l'incorporazione del riempitivo nelle mescole ha portato a materiali più rigidi con modulo elastico più elevato, allungamento a rottura inferiore e modulo conservativo più elevato. Il modulo conservativo (G') e la viscosità complessa (η*) dei compositi sono aumentate con l'aggiunta di CB-PPy. La soglia di percolazione reologica è risultata essere del 3% per PVDF/TPU/CB-PPy 38/62 vol% e dell'1% per PVDF/TPU/CB-PPy 50/50 vol%, indicando che una maggiore quantità di riempitivo potrebbe compromettere la processabilità dei compositi. L'aggiunta di CB-PPy ha comportato anche una riduzione dei valori di Tg e Tm dei compositi a causa della riduzione della mobilità delle catene polimeriche.
Sulla base della conduttività elettrica e del comportamento meccanico dei compositi, sono state selezionate tre diverse composizioni per l'estrusione di filamenti da utilizzare in un processo di stampa 3D. Nel complesso, le parti stampate in 3D presentavano proprietà meccaniche ed elettriche inferiori a causa della presenza di vuoti, difetti e strati sovrapposti che possono ostacolare il flusso di elettroni. I valori di conducibilità elettrica dei compositi PVDF/TPU/CB-PPy 38/62 vol% contenenti il 5% e il 6% di CB-PPy di campioni stampati in 3D sono da uno a sette ordini di grandezza inferiori a quelli trovati per i compositi stampati a compressione con la stessa composizione. Anche se il valore di conducibilità elettrica per il composito stampato a compressione PVDF/TPU 38/62 vol% con il 6% di CB-PPy era pari a 1,94x10-1 S•m-1, il composito stampato in 3D con la stessa composizione ha mostrato un valore molto basso di conducibilità elettrica, pari a 6,01x10-8 S•m-1. D'altra parte, il composito PVDF/TPU 50/50 vol% stampato in 3D con il 10% di riempitivo ha mostrato un elevato valore di conducibilità elettrica, pari a 4,14 × 100 S•m-1, anche dopo il processo di stampa.
Inoltre, sono state studiate le risposte piezoresistive dei compositi. Per i compositi PVDF/TPU/CB-PPy 38/62 vol%, i campioni stampati a compressione e stampati in 3D con il 5% e il 6% di CB-PPy hanno mostrato una buona risposta piezoresistiva. Tuttavia, solo i compositi con il 6% hanno mostrato valori di sensibilità e gauge factor elevati, ampio intervallo di pressione e risposte piezoresistive riproducibili in 100 cicli per entrambi i metodi. D'altra parte, per i compositi co-continui PVDF/TPU/CB-PPy solo il campione stampato a compressione con il 5% di CB-PPy ha presentato risposte piezoresistive adeguate e riproducibili.
La cristallinità e il contenuto di fase β del PVDF sono stati studiati per i compositi. Sebbene il grado di cristallinità dei campioni diminuisca con l'aggiunta di CB-PPy, la percentuale di fase β in PVDF risulta aumentata. Il coefficiente piezoelettrico d33 dei campioni aumenta anch’esso con la percentuale di fase β. L'aggiunta del 6% o più di CB-PPy è stata necessaria per aumentare significativamente il coefficiente piezoelettrico (d33) dei compositi. Il contenuto di fase β e le risposte piezoelettriche del PVDF sono inferiori per i campioni ottenuti mediante stampa 3D.
Infine, come ricerca collaterale, è stata misurata l'efficacia della schermatura contro le interferenze elettromagnetiche (EMI-SE) per tutti i compositi. I compositi con una maggiore conduttività elettrica hanno mostrato una migliore schermatura della radiazione elettromagnetica. Inoltre, i compositi basati sulla miscela co-continua hanno mostrato un'efficienza di schermatura EMI maggiore rispetto ai compositi a 38/62% in volume. Per tutti i compositi, il principale meccanismo di schermatura è l'assorbimento. I campioni preparati mediante manifattura additiva hanno mostrato risposte EMI-SE inferiori rispetto ai campioni stampati a compressione.
|
9 |
Systémy pro generování impulsního magnetického vektorového potenciálu / Systems for Generation of Pulse Magnetic Vector PotentialHanák, Pavel January 2012 (has links)
The doctoral thesis is focused on research, design, implementation and testing of systems for the application of magnetic vector potential to biological materials. The main objective was to analyze and design systems which could generate magnetic vector potential without the presence of other unwanted fields or at least amplify its intensity. Moreover, the systems designed had to eliminate other foreign effects on the biological samples, especially the influence of waste heat from the coils. Toroidal coils were employed to generate the vector potential, because they confine the unwanted magnetic induction inside their core thanks to their shape. The thesis employed coils with two different outer diameters, specifically 102 and 600 mm. To excite the coils, four current pulse generators capable of delivering currents of up to 100 A were constructed. The systems’ generated fields were comprehensively analyzed with the help of finite-element simulations in ANSYS. To simplify the design phase, analytical equations for the calculation of vector potential intensity at an arbitrary point around the toroidal coils were also derived. A method employing electromagnetic shielding made of two different materials was developed to suppress the unwanted fields. To eliminate the influence of heat, the 102 mm system employed air cooling and the 600 mm system employed a closed water loop to equalize the temperatures of biological samples. The biological effects of both systems were tested on genetically modified bio-luminescent bacteria Escherichia coli K12 luxABCDEamp. The thesis was created in connection with the research project of The Ministry of Education, Youth and Sports of the Czech Republic named “Research into the effect of a combination of substances for targeted therapy and inhibitory action of the field pulse vector magnetic potential on oncogenous diseases”, No. 2B08063.
|
10 |
Méthodologie de modélisation et de simulation numérique pour l'optimisation en compatibilité électromagnétique du blindage des chaines de traction électrique automobiles / Modeling and numerical simulation methodology for the electromagnetic compatibility optimization of the shielding for automotive electric powertrainsVincent, Morgan 26 January 2017
Pour répondre aux exigences réglementaires de plus en plus sévères au regard des émissions de CO2, l'industrie automobile voit poindre l'émergence des chaînes de traction électrique dans des structures véhicules en matériaux composites. Dans ce manuscrit, le point de vue du constructeur automobile est considéré. En effet, pour répondre aux exigences automobiles en compatibilité électromagnétique (CEM) pour l'homologation et la protection de la santé des personnes vis-à-vis des champs électriques et magnétiques, le blindage électromagnétique est l'une des solutions de conception les plus utilisées. Afin d'évaluer les meilleurs concepts à moindre coût et réduire autant que possible les délais de prototypage, la modélisation et la simulation numérique doivent encore se développer et être déployées. Les chapitres de ce manuscrit illustrent, étape par étape, la modélisation, la simulation et la validation expérimentale du blindage d'une architecture de chaîne de traction électrique. Dans un premier temps,l'influence d'un matériau composite à savoir l'époxy renforcé en fibres de carbone est étudié sur les émissions conduites et rayonnées en présence d'un câble blindé. Dans un deuxième temps, une méthodologie de modélisation des câbles blindés et des raccords de masse est proposée dans un environnement électromagnétique où la théorie des lignes de transmission classique ne s'applique pas. Pour valider les deux précédentes parties, des bancs de mesure sont proposés et développés. Les résultats expérimentaux sont comparés à la simulation numérique. La dernière partie considère une chaîne de traction électrique simplifiée en présence de boîtiers métalliques, de câbles de puissance blindés, de raccords de blindage et de raccords de masse dans une structure multi-matériaux dans la bande de fréquences 10 kHz - 300 MHz. Les émissions conduites et rayonnées sont analysées en portant une attention particulière à la perturbation de la réception radio. / To reach the increasingly stringent regulatory requirements for CO2 emissions, the automotive industry is improving the electric powertrains in car bodies with composite materials. In this thesis report, the point of view of the car manufacturer is considered. The electromagnetic shielding is one of the most important design solutions to respect the electromagnetic compatibility (EMC) requirements for the homologation and the protection of human health with respect to electrical and magnetic fields. In order to evaluate the best concepts at lower costand to minimize prototyping delays, modeling and numerical simulation still need to be developed and deployed.The chapters of this thesis report illustrate, step by step, the modeling, the simulation and the experimentalvalidation of the shielding applied to an electric powertrain. In a first step, the influence of a composite material such as the carbon fiber reinforced epoxy is studied on the conducted and the radiated emissions in presence of a shielded cable. In a second step, a methodology to model shielded cables and the grounding connectionsis proposed in an electromagnetic environment where classical transmission line theory cannot be applied. Tovalidate the two previous parts, measurement setups are proposed and developed. The experimental results arecompared with the numerical simulation. The last part considers a simplified electric powertrain with metal housings, shielded power cables, shielding connections and grounding connections in a multi-material structurein the 10 kHz - 300 MHz frequency band. The conducted and radiated emissions are analyzed with a particular attention to the disturbance of the radio reception.
|
Page generated in 0.4799 seconds