• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equation de Burgers g en eralis ée a force al éatoire et a viscosit é petite

Boritchev, Alexandre 08 October 2012 (has links) (PDF)
Cette thèse traite du comportement des solutions u de l'équation de Burgers généralisée sur le cercle: u_t+f'(u)u_x=\nu u_{xx}+\eta,\ x \in S^1=\R/\Z. Ici, f est lisse, fortement convexe et satisfait certaines conditions de croissance. La constante 0<\nu << 1 correspond à un coefficient de viscosité. Nous considérons le cas où \eta=0, ainsi que le cas où \eta est une force aléatoire, lisse en x et peu régulière (de type "kick" ou bruit blanc) en t. Nous obtenons des estimations sur les normes de Sobolev de u moyennées en temps et en probabilité de la forme C \nu^{-\delta}, \delta >= 0, avec les mêmes valeurs de \delta pour les bornes supérieures et inférieures. On en déduit des estimations précises pour les quantités à petite échelle caractérisant la turbulence qui confirment exactement les prédictions physiques. Nous nous intéressons également au comportement asymptotique des solutions. Nous obtenons un résultat d'hyperbolicité des minimiseurs pour l'action correspondant à l'équation de Hamilton-Jacobi stochastique, dont la dérivée en espace est l'équation de Burgers stochastique avec \nu=0.
2

Approche probabiliste des particules collantes et système de gaz sans pression

Moutsinga, Octave 16 June 2003 (has links) (PDF)
A chaque instant $t$, nous construisons la dynamique des particules collantes dont la masse est distribuée initialement suivant une fonction de répartition $F_0$, avec une vitesse $u_0$, à partir de l'enveloppe convexe $H(\cdot,t)$ de la fonction $m\in (0,1)\mapsto \int_a^m\big( F_0^(-1)(z) + tu_0\big(F_0^(-1)(z)\big)\big)dz$. Ici, $F_0^(-1)$ est l'une des deux fonctions inverses de $F_0$. Nous montrons que les deux processus stochastiques $X_t^-(m)= \partial_m^-H(m,t),\; X_t^+(m) = \partial_m^+H(m,t)$, définis sur l'espace probabilisé $([0, 1], (\cal B), \lambda)$, sont indistinguables et ils modélisent les trajectoires des particules. Le processus $X_t:= X_t^- = X_t^+$ est une solution de l'équation $(EDS): \; \frac(dX_t)(dt) =\E[ u_0(X_0)/X_t]$, telle que $P(X_0 \leq x) = F_0(x)\,\,\forall x$. L'inverse $M_t:= M(\cdot,t)$ de la fonction $m\mapsto \partial_mH(m,t)$ est la fonction de répartition de la masse à l'instant $t$. Elle est aussi la fonction de répartition de la variable aléatoire $X_t$. On montre l'existence d'un flot $(\phi(x,t,M_s, u_s))_( s < t)$ tel que $X_t= \phi(X_s,t,M_s,u_s)$, où $u_s(x) = \E[ u_0(X_0)/X_s = x]$ est la fonction vitesse des particules à l'instant $s$. Si $\frac(dF_0^n)(dx)$ converge faiblement vers $\frac(dF_0)(dx)$, alors la suite des flots $\phi(\cdot,\cdot,F_0^n,u_0)$ converge uniformément, sur tout compact, vers $\phi(\cdot,\cdot,F_0,u_0)$. Ensuite, nous retrouvons et étendons certains résultats des équations aux dérivées partielles, à savoir que la fonction $(x,t)\mapsto M(x,t)$ est la solution entropique d'une loi de conservation scalaire de donnée initiale $F_0$, et la famille $\big(\rho(dx,t) = P(X_t\in dx),\, u(x,t) = \E[ u_0(X_0)/X_t = x]\big)_(t >0)$ est une solution faible du système de gaz sans pression de données initiales $\frac(dF_0(x))(dx), u_0$. Cette thèse contient aussi d'autres solutions de l'équation différentielle stochastique $(EDS)$ ci-dessus.

Page generated in 0.1078 seconds