• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes

Burke, Benjamin I., Travis, S. K., Gentles, Jeremy A., Sato, Kimitake, Lang, Henry M., Bazyler, Caleb D. 01 August 2021 (has links)
Caffeine is often used in a variety of forms to enhance athletic performance; however, research regarding caffeine’s effects on strength and power in female athletes is lacking. Therefore, the purpose of this study was to analyze the acute effects of caffeine anhydrous (6 mg/kg of body mass) on jumping performance and maximal strength in female collegiate athletes. Eleven athletes (19.7 ± 0.9 yrs; 166.4 ± 10.2 cm, 67.7 ± 9.4 kg) performed two testing sessions separated by one week, and randomly received caffeine or placebo using a double-blind approach. Heart rate, blood pressure, and tympanic temperature were recorded before athletes received each condition, following 60 min of quiet sitting, and directly after performance testing. Athletes were assessed on unweighted and weighted squat jump height (SJH0, SJH20) and countermovement jump height (CMJH0, CMJH20), isometric mid-thigh pull peak force (IPF), and rate of force development from 0–200 ms (RFD200). Resting systolic blood pressure was significantly greater following caffeine administration compared to a placebo (p = 0.017). There were small, significant differences in SJH0 (p = 0.035, g = 0.35), SJH20 (p = 0.002, g = 0.49), CMJH0 (p = 0.015, g = 0.19), and CMJH20 (p < 0.001, g = 0.37) in favor of caffeine over placebo. However, there was no significant difference in IPF (p = 0.369, g = 0.12) and RFD200 (p = 0.235, g = 0.32) between conditions. Therefore, caffeine appears to enhance jumping performance, but not maximal strength in female collegiate athletes.

Page generated in 0.0946 seconds