Spelling suggestions: "subject:"espace gromov hyperbolic"" "subject:"espace promov hyperbolic""
1 |
Jauge conforme des espaces métriques compactsCarrasco Piaggio, Matias 25 October 2011 (has links) (PDF)
L'objet principal de cette thèse est l'étude de la dimension conforme Ahlfors régulière ($\dim_{AR}X$) d'un espace métrique $X$. C'est un invariant numérique par quasisymétrie, introduit par P.\,Pansu, permettant la classification à quasi-isométrie près des espaces homogénes de courbure négative. Elle joue actuellement un rôle important en théorie géométrique des groupes et en dynamique conforme. A partir d'une suite de recouvrements d'un espace métrique compact $\left(X,d\right)$, on construit des distances de dimension contrôlée appartenant à la jauge conforme (Ahlfors régulière). On peut ainsi caractériser toutes les métriques de la jauge á homéomorphismes bi-Lipschitz prés. On montre comment calculer $\dim_{AR}X$ á partir de modules combinatoires en considérant un exposant critique $Q_N$. Comme conséquence de l'égalité $\dim_{AR}X=Q_N$, on obtient un critère général de dimension $1$. Les conditions sont données en termes de points de coupure locale de $X$. On donne par ailleurs des applications de ces résultats aux bords des groupes hyperboliques et aux ensembles de Julia des fractions rationnelles semihyperboliques.
|
2 |
Dynamique topologique sur les surfaces : gros groupe modulaire & classes de Brouwer / Topological dynamics on surfaces : big mapping class group and Brouwer classesBavard, Juliette 09 December 2015 (has links)
On étudie le groupe modulaire G du plan privé d'un ensemble de Cantor et les classes de Brouwer du groupe modulaire du plan privé de Z. Ces objets apparaîssent naturellement en dynamique topologique sur les surfaces. Dans le premier chapitre, on s'intéresse au groupe G et à son action sur le graphe des rayons, qui est un analogue déni par Danny Calegari du complexe des courbes pour le plan privé d'un ensemble de Cantor. En particulier, on montre que ce graphe est de diamètre infini et hyperbolique. On utilise ensuite l'action de G sur ce graphe hyperbolique pour exhiber un quasi-morphisme non trivial explicite sur G et pour montrer que le deuxième groupe de cohomologie bornée de G est dedimension infinie. Enfin, on donne un exemple d'un élément hyperbolique de G dont la longueur stable des commutateurs est nulle. Dans le second chapitre, on développe de nouveaux outils pour la théorie de Brouwer homotopique. En particulier, on décrit un ensemble canonique de droites de réduction, l'ensemble des murs, qui sépare le plan en zones de translation maximales et en zones irréductibles. On se restreint ensuite au cas des classes de Brouwer relativement à quatre orbites, et on les décrit explicitement en ajoutant au diagramme de Handel et à l'ensemble des murs un emmêlement, qui est essentiellement une classe d'isotopie de courbes sur le cylindre privé de deux points. / We study the mapping class group G of the complement of a Cantor set in the plane and the Brouwer mapping classes of the mapping class group of the complement of Z in the plane. These objects arise naturally in topological dynamics on surfaces. In the first chapter, we study the group G and its action on the ray graph, which is the analog dened by Danny Calegari of the complex of curves for the complement of a Cantor set in the plane. In particular, we show that this graph has infinite diameter and is hyperbolic. We use the action of G on this graph to find an explicit non trivial quasimorphism on G and to show that this group has infinite dimensional second bounded cohomology. We give an example of a hyperbolic element of G with vanishing stable commutator length. In the second chapter, we give new tools for homotopy Brouwer theory. In particular, we describe a canonical reducing set, the set of "walls", which splits the plane into maximal translation areas and irreducible areas. We then focus on Brouwer mapping classes relatively to four orbits and describe them explicitly by adding to Handel's diagram and to the set of walls a "tangle", which is essentially an isotopy class of simple closed curves in the cylinder minus two points.
|
Page generated in 0.0782 seconds