261 |
Enantiospecific Approaches To Solavetivones And SolanasconesRama Sastry, Sripada S V 07 1900 (has links) (PDF)
No description available.
|
262 |
Studies On Hydrolytic And Thermal Degradations Of Polyphosphate EstersNarendran, N 03 1900 (has links) (PDF)
No description available.
|
263 |
Reatividade de ésteres de fósforo(III) em tetraaminas de rutênio / Reactivity of phosphorus(III) esters in ruthenium tetraamminesDaniela Ramos Truzzi 19 February 2014 (has links)
As alterações na reatividade de ésteres de fósforo(III) promovidas pela coordenação ao centro metálico de rutênio(II) e o mútuo efeito e influência trans entre ésteres de fósforo(III) e ligantes π-aceptores (NO+ e CO) foram o foco deste trabalho. Dados de Ressonância Magnética Nuclear adquiridos em função do tempo sugerem que a coordenação de fosfitos ao centro de rutênio(II) estabiliza essas moléculas com respeito à reações de hidrólise e de oxidação. Esta estabilização é maior quando a coordenação se dá no fragmento trans-[Ru(H2O)(NH3)4]2+ do que no trans-[Ru(NO)(NH3)4]3+ devido à menor competição pelos elétrons 4dπ(RuII) no aqua do que nos nitrosilos complexos. A correlação linear entre os valores numéricos das constantes de hidrólise dos alquil fosfitos nos complexos trans-[Ru(NO)(NH3)4P(III)]3+ (P(III) = P(OC3H7)3, P(OC4H9)3, P(OC2H5)3 e P(OH)(OC2H5)2) e os valores numéricos de δ13C mostram que a hidrólise de fosfitos coordenados a Ru(II) ocorre preferencialmente via mecanismo de Michaelis Arbusov. Apenas o nitrosilo em que P(III) = P(OCH3)3 não apresentou esta correlação, indicando que, neste caso, provavelmente a hidrólise se dá via mecanismo de Asknes. Os complexos trans-[Ru(NO)(NH3)4(P(O)(OH)2)]ZnCl4 e trans-[Ru(CO)(NH3)4(P(OH)3)]ZnCl4 foram isolados e caracterizados por Raio-X, UV-vis, RMN, IV, voltametria cíclica e análise elementar. O pKa do ácido fosforoso coordenado foi calculado em solução por meio de espectroscopia de infravermelho apresentando os valores de 0,74 e 3,30 para o nitrosilo e carbonilo complexos, respectivamente. Isto confirma que, em tetraamminas de rutênio(II), o NO+ é um recebedor π consideravelmente mais forte que o CO. A estabilidade de ambos os complexos em solução aquosa foi acompanhada por UV-vis, 31P RMN e IV. Observou-se que o nitrosônio empresta ao centro metálico de rutênio(II) características de rutênio(III) favorecendo a isomerização do ligante ácido fosforoso, formando as espécies trans-[Ru(NO)(NH3)4((O)P(OH)2)]2+ e trans-[Ru(NO)(NH3)4((O)P(H)(OH)2)]3+ e só após isto ocorre a dissociação do ácido fosforoso. Dados experimentais de UV-vis e IV e sua correlação com cálculos DFT, indicam que o CO também induz a isomerização do ácido fosforoso coordenado no íon trans-[Ru(CO)(NH3)4(P(O)(OH)2)]2+, porém a velocidade de isomerização é consideravelmente menor do que no nitrosilo complexo. O composto trans-[Ru(NO)(NH3)4(P(O)(OCH2CH3)2)](PF6)2, em que o éster de fósforo é um dialquil fosfito, também foi sintetizado e caracterizado. Os dados cinéticos mostram que o íon trans-[Ru(NO)(NH3)4(P(O)(OCH2CH3)2)]2+ é o mais estável dentre os nitrosilos complexos do tipo trans-[Ru(NO)(NH3)4P(III)]n+ no que diz respeito às reações de ataque nucleofílico nos ligantes fosfito e nitrosônio, o que o torna um interessante candidato a doador de NO/HNO em meio biológico. / Changes in phosphorus(III) esters reactivity promoted by coordination to ruthenium(II) metal center and the mutual trans effect and influence of esters of phosphorus(III) and π-acceptor ligands (NO+ and CO) were the focus of this work. Nuclear Magnetic Resonance data acquired as function of time suggest that phosphites coordination to ruthenium(II) center stabilizes these molecules regarding to hydrolysis and oxidation reactions. This stabilization is greater when the coordination occurs to trans-[Ru(H2O)(NH3)4]2+ than to trans-[Ru(NO)(NH3)4]3+ fragment due to smaller competition for 4dπ(RuII) electrons in aquo than nitrosyl complexes. The correlation between the numeric values of the alkyl phosphites hydrolysis constants in trans-[Ru(NO)(NH3)4P(OR)3]3+ (P(III) = P(OC3H7)3, P(OC4H9)3, P(OC2H5)3 e P(OH)(OC2H5)2) complexes and the numeric values of δ13C shows that hydrolysis of phosphites coordinated to Ru(II) takes place preferably via Michaelis Arbusov mechanism. Only the nitrosyl complex where P(III) = P(OCH3)3 did not exhibit this correlation which indicated that, in this case, the hydrolysis probably occurs via Asknes mechanism. The trans-[Ru(NO)(NH3)4(P(O)(OH)2)]ZnCl4 and trans-[Ru(CO)(NH3)4(P(OH)3)]ZnCl4 complexes were isolated and characterized using X-ray, UV-vis, NMR, IR, elemental analysis, and cyclic voltammetry. The pKa of the coordinated phosphorous acid was calculated in solution through infrared spectroscopy and exhibited the values of 0.74 and 3.30 for nitrosyl and carbonyl complexes, respectively. This confirm that, in ruthenium(II) tetraammines, NO+ is a stronger π-acceptor than CO. The stability of these both complexes in aqueous solution was followed by UV-vis, 31P NMR and IR. It was observed that nitrosonium ligand makes the ruthenium(II) metal center exhibit ruthenium(III) characteristics favoring the isomerization of the phosphorous acid ligand leading to trans-[Ru(NO)(NH3)4((O)P(OH)2)]2+ and trans-[Ru(NO)(NH3)4((O)P(H)(OH)2)]3+ species, and only after that occurs the dissociation of the phosphorous acid. UV-vis and IR experimental data and the correlation with DFT calculations indicate that CO also induces isomerization of the coordinated phosphorous acid in trans-[Ru(CO)(NH3)4(P(O)(OH)2)]2+, but the isomerization rate is considerably smaller than in the nitrosyl complex. The trans-[Ru(NO)(NH3)4(P(O)(OCH2CH3)2)](PF6)2 compound, wherein the phosphorus ester is a dialkyl phosphite, was also synthesized and characterized. The kinetic data show that the trans-[Ru(NO)(NH3)4(P(O)(OCH2CH3)2)]2+ is the most stable among the nitrosyl complexes of the trans-[Ru(NO)(NH3)4P(III)]n+ type regarding to the phosphite and nitrosonium nucleophilic attack reactions which makes this complex an interesting candidate as a NO/HNO-donor in biological medium.
|
264 |
Elektrické vlastnosti alternativních kapalin pro elektrotechniku / Electrical properties of alternative liquids for electrical engineeringNaider, Jan January 2015 (has links)
Electrical insulating liquids, organic esters, conductivity, dielectric, permittivity
|
265 |
Dry and wet deposition processes as a source of organophosphate flame retardants (OFR) in soilsMihajlović, Ivana 06 July 2012 (has links)
Flame retardants are substances, which addition in various materials (furniture, plastics, electronics equipment, textiles, etc) could save a lot of lives and injuries caused by fires. On the other side, the migration of flame retardants from products during their whole life cycle results in their ubiquitous presence in the environment and reflects negative effects on ecosystems and human health. Global consumption of organophosphate flame retardants (OFR) as alternative substitutes of polybrominated diphenyl ethers has increased sharply in recent years. Studies on the presence and sources of OFR in surface water, ground water, sediments, snow, rainwater, indoor and outdoor air and analyses of OFR in these compartments have also increased in the last decade.
In this doctoral thesis an analytical method was developed to determine six OFR (tris(2-chloroethyl) phosphate (TCEP), tris(2-chlorisopropyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP), tris(2-butoxyethyl) phosphate (TBEP), tri(n-butyl) phosphate (TnBP) and triphenyl phosphate (TPP)) in soil. The method consists of a combination of Twisselmann extraction and solid-phase microextraction (SPME), followed by gas chromatography-mass spectrometry (GC-MS). To develop the method, spiked soils were extracted using a Twisselmann extractor after freeze-drying. The extracts were evaporated to dryness, redissolved, and filtered. A volume of 7 mL was then analysed by SPME, followed by GC-MS. The effects of different parameters on analyte recoveries during sample preparation e.g. solvent for Twisselmann extraction, solvent for redissolving the extract, addition of copper, and filtration of the extract were systematically investigated. Under optimum conditions, 10 g of soil were extracted using toluene, and the extract was redissolved in methanol/water (1:14) and filtered. It was not necessary to add copper. For TnBP, TBEP, TCPP, and TCEP, recoveries ranged from 77.0 % to 89.6 %. Those for TPP and TDCP were much lower, at 31.5 % and 42.0 %, respectively (addition level 22.9-45.8 ng/g). The variability of recoveries under these conditions was between 0.3 and 16.2 % (n = 3). Limits of detection (LOD) were 0.002-3 ng/g.
When ultrasonication was used instead of Twisselmann extraction in the developed method, recoveries were three to four times lower (27.4 % to 30.6 %), but the variability of recoveries was below 3 % (n = 3).
The method was applied to quantify OFR in soils collected from different sampling locations (urban, semi-urban and rural) in Germany. The results indicated for the first time that atmospheric deposition leads to soil contamination by OFR. Since it has been shown in animal experiments (F344/N rats and B6C3F1 mice) that chlorinated OFR were carcinogen and also have negative effects on human health (Matthews et al., 1991, 1993, Johnson, 1999), the further studies were focused on sources of chlorinated OFR. Therefore, the influence of dry and wet deposition processes as a source of chlorinated OFR in soils was systematically investigated. Soil samples were collected in 2010/11 during a period of snow falling to snow melting, a period of rainfall and a dry period. Snow and rainwater samples were also collected from the soil sampling site. Concentrations of TCEP were between 236 and 353 ng/L in snow and 78 and 234 ng/L in rain. TCPP concentrations were between 226 and 284 ng/L in snow and 371 and 385 ng/L in rain. In soil samples, concentrations ranged from 5.07 to 23.48 ng/g dry weight (dwt) for TCEP and 5.66 to 19.82 ng/g dwt for TCPP. Concentrations of TDCP in rainwater and snow samples were rather low (46 and 100 ng/L, respectively); concentrations of TDCP were below the limit of detection in soil samples.
Snow melting caused enhanced soil concentrations of TCEP and TCPP. However a greater effect of snow melting was observed for TCEP than for TCPP. No significant correlation between precipitation amounts and soil concentrations was observed for both compounds. The influence of wet deposition to the soil contents of TCEP and TCPP may be covered by volatilisation or by the migration of both compounds to deeper soil zones with seepage water, based on their volatility and high water solubility, respectively. Snow was found to be even a more efficient source of chlorinated OFR in soil than rainwater. During dry weather, the soil concentrations of both compounds seemed to be driven mainly by concentrations in air, which are driven by source emission strengths and photochemical degradation in the atmosphere.
Rainwater concentrations of OFR were used to assess air concentrations from the scavenging ratios at equilibrium conditions and the potential for the accumulation of OFR in soil based on the air-soil exchange was estimated. Calculated values of median air concentrations were 0.0034 ng/m3 for TCEP and 0.99 ng/m3 for TCPP. Total OFR specific loads were 3756 ng m-2 day-1 within the first 24 hours and 3028 ng m-2 day-1 within the next 24 h. Fugacity calculations (0.011 to 0.103 for TCPP and 0.005 to 0.073 for TCEP) indicated net deposition from air to soil for both compounds.
|
266 |
Characterization of Lactose Esters for Their Antimicrobial and Emulsification PropertiesSandhu, Guneev 01 May 2014 (has links)
Sucrose esters have an established use in food industry as emulsifiers. Two novel lactose esters (lactose monodecanoate and lactose monomyristate) were synthesized and studied for their antimicrobial and emulsification properties. Lactose is a byproduct in cheese production and is an inexpensive carbohydrate source.
The antimicrobial activity of lactose monodecanoate (LMD) and lactose monomyristate (LMM) was tested against the growth of seven different bacteria. Both esters, when dissolved in dimethoxy sulfoxide (DMSO), proved bactericidal against Bacillus cereus, Mycobacteria KMS and Streptococcus suis. LMM/DMSO was bactericidal against B. cereus at concentrations between 1 and 3 mg/ml. LMM/DMSO was bactericidal against M. KMS and S. suis at concentrations between 3 and 5 mg/ml. LMD/DMSO was bactericidal against B. cereus and S. suis at concentrations between 1 and 3 mg/ml and against M. KMS at concentrations between 0.1 and 1 mg/ml. LMM/DMSO and LMD/DMSO were not effective in inhibiting the growth of Listeria monocyotgenes and Enterococcus faecalis.
The antimicrobial effects of LMD on the growth of Listeria monocytogenes and Enterococcus faecalis were found to be solvent dependent. LMD, when dissolved in 30% ethanol, was able to inhibit the growth of L. monocytogenes at concentration between 1 and 3 mg/ml and E. faecalis at concentration between 3 and 5 mg/ml. The growth of Streptococcus mutans and Escherichia coli O157:H7 remained unaltered in the presence of LMD/ETOH, LMD/DMSO and LMM/DMSO up to 5 mg/ml.
LMM was also analyzed for its emulsification properties. The destabilization rates and droplet size of the emulsion were determined for five consecutive days. At a concentration of 0.5%, LMM produced 20% oil in water emulsion with destabilization rate of 1.1 mm/day, which can be considered a stable emulsion. The droplet size of the emulsion was also within the range of 0-10 μm. Lower droplet size range signifies the effective work of the LMM as an emulsifier. Also the droplet size of the emulsion was found to be consistent over five days, which is indicative of a stable emulsion.
|
267 |
Urea adducts of the esters of stearic acidGreene, Paul Elliott 01 January 1952 (has links)
Urea forms crystalline complexes with n-alkanes and their liner derivatives but not with most branched and cyclic hydrocarbons and their derivatives. The compounds are stable enough to be used in separating these types of aliphatic compounds from their branched and cyclic analogs. Linear esters derived from normal saturated acids give adducts as expected. Urea complexation was found to be of great importance in the purification and separation of unsaturated esters of high molecular weight.
The object of the present research was to investigate the compositions of urea adducts of various long-chain esters, approaching the class of waxes, to test various methods of determining their compositions, and to determine the suitability of the adduct method for purifying such esters.
|
268 |
Generation of Biodiesel and Carotenoids from Rhodotorula Glutinis using Sweet Sorghum JuiceRevellame, Miriam Llanto 15 December 2012 (has links)
The growth of Rhodotorula glutinis in sweet sorghum juice in three levels of three factors of temperature, carbon to nitrogen ratio and pH was evaluated. Accompanying of this growth was the generation of lipids converted to fatty acid methyl ester (FAMEs) and carotenoids. The optimized condition for maximum biomass and carotenoid accumulation was determined to be at 25C, pH of 5.5 and carbon to nitrogen ratio of 10. This condition yielded 22.7 g/L biomass with specific growth rate of 0.213 hr-1. At this condition the carotenoids generation was also maximum with 2.6 mg/gram biomass, comprising of torularhodin, beta-carotene and torulene. The accumulation of lipids following generation of biodiesel was highest at same temperature and pH but carbon to nitrogen ratio of 70, generating 96.3 mg of FAMEs/gram of biomass containing methyl ester of oleic acid, linoleic acid, palmitic acid, stearic acid and linolenic acid.
|
269 |
Permeation Sampling of Phthalate EstersSteele, Heather L. 03 September 2009 (has links)
No description available.
|
270 |
Functional group transformations of imidoyl & iminium triflates and designing an enantioselective diels-alder catalystChua, Peter January 1998 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.0593 seconds