221 |
Reatividade de ésteres de fósforo(III) em tetraaminas de rutênio / Reactivity of phosphorus(III) esters in ruthenium tetraamminesTruzzi, Daniela Ramos 19 February 2014 (has links)
As alterações na reatividade de ésteres de fósforo(III) promovidas pela coordenação ao centro metálico de rutênio(II) e o mútuo efeito e influência trans entre ésteres de fósforo(III) e ligantes π-aceptores (NO+ e CO) foram o foco deste trabalho. Dados de Ressonância Magnética Nuclear adquiridos em função do tempo sugerem que a coordenação de fosfitos ao centro de rutênio(II) estabiliza essas moléculas com respeito à reações de hidrólise e de oxidação. Esta estabilização é maior quando a coordenação se dá no fragmento trans-[Ru(H2O)(NH3)4]2+ do que no trans-[Ru(NO)(NH3)4]3+ devido à menor competição pelos elétrons 4dπ(RuII) no aqua do que nos nitrosilos complexos. A correlação linear entre os valores numéricos das constantes de hidrólise dos alquil fosfitos nos complexos trans-[Ru(NO)(NH3)4P(III)]3+ (P(III) = P(OC3H7)3, P(OC4H9)3, P(OC2H5)3 e P(OH)(OC2H5)2) e os valores numéricos de δ13C mostram que a hidrólise de fosfitos coordenados a Ru(II) ocorre preferencialmente via mecanismo de Michaelis Arbusov. Apenas o nitrosilo em que P(III) = P(OCH3)3 não apresentou esta correlação, indicando que, neste caso, provavelmente a hidrólise se dá via mecanismo de Asknes. Os complexos trans-[Ru(NO)(NH3)4(P(O)(OH)2)]ZnCl4 e trans-[Ru(CO)(NH3)4(P(OH)3)]ZnCl4 foram isolados e caracterizados por Raio-X, UV-vis, RMN, IV, voltametria cíclica e análise elementar. O pKa do ácido fosforoso coordenado foi calculado em solução por meio de espectroscopia de infravermelho apresentando os valores de 0,74 e 3,30 para o nitrosilo e carbonilo complexos, respectivamente. Isto confirma que, em tetraamminas de rutênio(II), o NO+ é um recebedor π consideravelmente mais forte que o CO. A estabilidade de ambos os complexos em solução aquosa foi acompanhada por UV-vis, 31P RMN e IV. Observou-se que o nitrosônio empresta ao centro metálico de rutênio(II) características de rutênio(III) favorecendo a isomerização do ligante ácido fosforoso, formando as espécies trans-[Ru(NO)(NH3)4((O)P(OH)2)]2+ e trans-[Ru(NO)(NH3)4((O)P(H)(OH)2)]3+ e só após isto ocorre a dissociação do ácido fosforoso. Dados experimentais de UV-vis e IV e sua correlação com cálculos DFT, indicam que o CO também induz a isomerização do ácido fosforoso coordenado no íon trans-[Ru(CO)(NH3)4(P(O)(OH)2)]2+, porém a velocidade de isomerização é consideravelmente menor do que no nitrosilo complexo. O composto trans-[Ru(NO)(NH3)4(P(O)(OCH2CH3)2)](PF6)2, em que o éster de fósforo é um dialquil fosfito, também foi sintetizado e caracterizado. Os dados cinéticos mostram que o íon trans-[Ru(NO)(NH3)4(P(O)(OCH2CH3)2)]2+ é o mais estável dentre os nitrosilos complexos do tipo trans-[Ru(NO)(NH3)4P(III)]n+ no que diz respeito às reações de ataque nucleofílico nos ligantes fosfito e nitrosônio, o que o torna um interessante candidato a doador de NO/HNO em meio biológico. / Changes in phosphorus(III) esters reactivity promoted by coordination to ruthenium(II) metal center and the mutual trans effect and influence of esters of phosphorus(III) and π-acceptor ligands (NO+ and CO) were the focus of this work. Nuclear Magnetic Resonance data acquired as function of time suggest that phosphites coordination to ruthenium(II) center stabilizes these molecules regarding to hydrolysis and oxidation reactions. This stabilization is greater when the coordination occurs to trans-[Ru(H2O)(NH3)4]2+ than to trans-[Ru(NO)(NH3)4]3+ fragment due to smaller competition for 4dπ(RuII) electrons in aquo than nitrosyl complexes. The correlation between the numeric values of the alkyl phosphites hydrolysis constants in trans-[Ru(NO)(NH3)4P(OR)3]3+ (P(III) = P(OC3H7)3, P(OC4H9)3, P(OC2H5)3 e P(OH)(OC2H5)2) complexes and the numeric values of δ13C shows that hydrolysis of phosphites coordinated to Ru(II) takes place preferably via Michaelis Arbusov mechanism. Only the nitrosyl complex where P(III) = P(OCH3)3 did not exhibit this correlation which indicated that, in this case, the hydrolysis probably occurs via Asknes mechanism. The trans-[Ru(NO)(NH3)4(P(O)(OH)2)]ZnCl4 and trans-[Ru(CO)(NH3)4(P(OH)3)]ZnCl4 complexes were isolated and characterized using X-ray, UV-vis, NMR, IR, elemental analysis, and cyclic voltammetry. The pKa of the coordinated phosphorous acid was calculated in solution through infrared spectroscopy and exhibited the values of 0.74 and 3.30 for nitrosyl and carbonyl complexes, respectively. This confirm that, in ruthenium(II) tetraammines, NO+ is a stronger π-acceptor than CO. The stability of these both complexes in aqueous solution was followed by UV-vis, 31P NMR and IR. It was observed that nitrosonium ligand makes the ruthenium(II) metal center exhibit ruthenium(III) characteristics favoring the isomerization of the phosphorous acid ligand leading to trans-[Ru(NO)(NH3)4((O)P(OH)2)]2+ and trans-[Ru(NO)(NH3)4((O)P(H)(OH)2)]3+ species, and only after that occurs the dissociation of the phosphorous acid. UV-vis and IR experimental data and the correlation with DFT calculations indicate that CO also induces isomerization of the coordinated phosphorous acid in trans-[Ru(CO)(NH3)4(P(O)(OH)2)]2+, but the isomerization rate is considerably smaller than in the nitrosyl complex. The trans-[Ru(NO)(NH3)4(P(O)(OCH2CH3)2)](PF6)2 compound, wherein the phosphorus ester is a dialkyl phosphite, was also synthesized and characterized. The kinetic data show that the trans-[Ru(NO)(NH3)4(P(O)(OCH2CH3)2)]2+ is the most stable among the nitrosyl complexes of the trans-[Ru(NO)(NH3)4P(III)]n+ type regarding to the phosphite and nitrosonium nucleophilic attack reactions which makes this complex an interesting candidate as a NO/HNO-donor in biological medium.
|
222 |
Novel transition metal-catalysed syntheses of carboxylic acid derivativesOwston, Nathan Ashley January 2008 (has links)
This thesis describes the chemistry developed during a study of novel transition metalcatalysed reactions for the synthesis of carboxylic acid derivatives. Chapter 2 describes a novel protocol for the synthesis of primary amides from alcohols in one-pot where a metal complex mediates two fundamentally different catalytic processes. An iridium catalyst has been shown to be effective for the selective rearrangement of aldoximes into primary amides. In addition, an iridium-catalysed oxidation of activated alcohols via hydrogen transfer has been developed using an alkene as formal oxidant. These reactions have been combined in a sequential process affording good yields for a range of benzylic alcohols. An improved system for the rearrangement of aldoximes into amides using a new ruthenium catalyst is described in Chapter 3. Through a systematic program of optimisation excellent selectivity was achieved for a wide range of substrates at markedly reduced catalyst loading. Chapter 4 describes the development of a ruthenium-catalysed elimination reaction for the conversion of oxime ethers into nitriles. The application of this reaction to tandem and sequential reactions has been explored, albeit with limited success. Also, a method for the ruthenium-catalysed oxidation of alcohols using an electron-deficient alkene as hydrogen acceptor is described, and its application to a tandem oxidation process with a nitrogen nucleophile demonstrated. As an extension of the concept presented in Chapter 4, tandem oxidation processes with oxygen nucleophiles are the subject of Chapter 5. This strategy has been used for the oxidation of primary alcohols to their corresponding methyl esters in one-pot, with good yields obtained for a range of substrates. The use of water as a nucleophile in such a process has also been examined.
|
223 |
The adsorption of glyceryl esters at the alumina/toluene interfaceTormey, E. S. (Ellen Schwartz) January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Vita. / Includes bibliographical references. / by Ellen Schwartz Tormey. / Ph.D.
|
224 |
Boronic acid speciation in Suzuki-Miyaura cross-couplingGeogheghan, Katherine Jayne January 2018 (has links)
Since its discovery in 1979, the Suzuki-Miyaura (SM) reaction has become one of the most widely utilised tools for carbon-carbon bond formation. The palladium catalysed coupling of an organoboron and organohalide compounds proceeds through a three-stage mechanism of oxidative addition, transmetalation and reductive elimination. The transmetalation of boronic acids to a palladium(II) complex has been widely studied. However, very little is known about the transmetalation of boronic esters, which are commonly used as an alternative to unstable boronic acids. Whether these species undergo direct transmetalation or prior hydrolysis to the boronic acid under SM conditions remains unknown. This research aimed to elucidate the mechanism of this cross-coupling process. Initial results under typical SM conditions created a biphasic reaction, promoted by the inorganic base and solvent composition, and showed that the boronic esters and corresponding boronic acid couple at the same absolute rate. This is thought to be a consequence of the formation of a biphasic mixture, rendering phase transfer the turnover-limiting step. The conditions were thus adapted to maintain a monophasic system using an organic soluble base, 2-tert-butyl-1,1,3,3-tetramethylguanidine, enabling the focus to be transmetalation as the turnover-limiting step. These new conditions show a significant difference in both reaction rate and induction period when using a boronic ester compared to the corresponding boronic acid. The use of guanidine was also shown to have an interesting effect on the boronic acid/ester species by 19F and 11B NMR. Further studies found the use of guanidine to create a boronate species, with this species being an aryl trihydroxyboronate or the hydroxyl"ate"-complex of the boronic ester, depending on the presence of diol in the system. Formation of a boronate species was found to be crucial for efficient cross-coupling. When testing weaker bases, unable to form a boronate species, poor SM cross-coupling conversion was found using the newly developed phosphine-free guanidine conditions, showing the importance of the boronate species under these conditions. The results suggest that depending on the strength of base used, the pathway of transmetalation pathway can be switched, between the boronate pathway and the oxo-palladium pathway, under the specific conditions developed.
|
225 |
Fluorinated [beta]-sultones as Precursors to Fluorinated Sulfonic Acids, and New Fluorosulfonyl Containing Monomers/PolymersMohtasham, Javid 01 January 1989 (has links)
Sulfur trioxide (SO₃) adds to fluoroolefins of the form RCF=CF₂, (where R = F, SF₅, CF₃, CF₃OCF₂, CF₂=CF(CF₂)₂, CF₃(CF₂)₃O, CF₃O(CF₂)₂OCF₂, or CH₂ClCHClCH₂), yielding the fluorinated [beta]-sultones, RCFCF₂OSO₂. In the case of CF₃(CF₂)₃OCF=CF₂, a reverse addition occurs, giving the sultone, CF₃(CF₂)₃CF₂2OCFCF₂SO₂O. The fluoro [beta]-sultones are capable of undergoing different reactions, such as rearrangement, hydrolysis, esterification, and polymerization. These reactions, will result in the formation of compounds containing the fluorosulfonyl grouping (SO₂F); it is this group that yields the corresponding sulfonic acid upon base/acid treatment.
The addition of sodium bisulfite to CF₃CF= CF₂ and CF₃(CF₂)₄CF=CF₂ in the presence of (C₆H₅CO)₂O₂ and Na₂B₄O₇·10H₂O was also studied to produce the corresponding sulfonic acid hydrates of the general formula, R[subscript f]CFHCF₂SO₃H·nH₂O. These acids were prepared, and thus, tested as possible fuel cell electrolytes.
Infrared, ¹H and ¹⁹F nuclear magnetic resonance and mass spectra, as well as elemental analyses, will be presented in order to support the proposed structures for the resulted compounds.
|
226 |
Metal complexes based on macrocyclic ligands and their ability to hydrolyse phosphate estersFry, Fiona Helen, 1972- January 2002 (has links)
Abstract not available
|
227 |
Synthetic and Mechanistic Investigations of Some Novel Organophosphorus ReagentsFairfull-Smith, Kathryn Elizabeth, n/a January 2004 (has links)
The alkoxytriphenylphosphonium ion intermediate of the Mitsunobu reaction for the esterification and inversion of configuration of an alcohol can be generated using the Hendrickson reagent, triphenylphosphonium anhydride trifluoromethanesulfonate, 27. While 27 was used in place of the Mitsunobu reagents (triphenylphosphine and a dialkyl azodicarboxylate) for the esterification of primary alcohols, the reaction failed with secondary alcohols such as (-)-menthol giving predominately elimination rather than the desired SN2 displacement. The difference between the two reactions was shown to be related to the more 'ionic' conditions generated when the Hendrickson reagent 27 was employed. An extreme sensitivity of the Mitsunobu reaction to the presence of salts was discussed and may indicate a mechanism involving ion pair clustering. Five-, six- and seven-membered cyclic analogues of the Hendrickson reagent 90-92 were prepared. A kinetic comparison of the cyclic analogues 90-92 revealed that a considerable increase in the rate of esterification could be achieved when the five-membered ring analogue 90 was used in a non-polar solvent such as toluene. Selected acyclic analogues of the Hendrickson reagent 27 possessing tributyl 118, tricyclohexyl 130 and diphenyl-2-pyridyl 137 functionalities were synthesised. However when 118, 130 and 137 were used for the attempted esterification of (-)-menthol, elimination was the major reaction pathway. Diphenyl-2-pyridylphosphonium anhydride triflate 137 was found to be a useful reagent for the synthesis of acyclic dialkyl ethers from primary alcohols. A polymeric version of the five-membered ring analogue 56, prepared by reaction of the polymer-supported 1,2-bis(diphenylphosphinyl)ethane 57 with triflic anhydride, was used for the preparation of simple esters and amides. A new dehydrating agent, polymer-supported triphenylphosphine ditriflate 157, was readily prepared from the oxidised form of commercially available polymer-supported triphenylphosphine and triflic anhydride. A wide range of dehydration-type reactions, such as ester, amide, anhydride, peptide, ether and nitrile formation, were performed in high yield using polymer-supported triphenylphosphine ditriflate 157. The reagent 157 was easily recovered and re-used several times without loss of efficiency. The use of 4-dimethylaminopyridine allowed the esterification of secondary alcohols with 157 to proceed without elimination and gave esters in high yield but with retention of configuration. Both reagents 56 and 157 provide an alternative to the Mitsunobu reaction, where the use of azodicarboxylates and chromatography to remove the phosphine oxide by-product can be avoided. However, the Mitsunobu reaction retains its supremacy for the inversion of configuration of a secondary alcohol. Preliminary investigations on the phosphityation of alcohols via the Hendrickson reagent 27, 1,3-benzodioxole formation using the Mitsunobu reaction and azodicarboxylate alternatives in the Mitsunobu reaction are described.
|
228 |
Biodégradation du 2-éthylhexyl nitrate par Mycobacterium austroafricanum IFP 2173Nicolau, Elodie 07 October 2008 (has links) (PDF)
Le 2-éthylhexyl nitrate (2-EHN) est incorporé en quantité significative au gazole afin d'augmenter son indice de cétane. Ce composé est produit à raison de 100 000 tonnes par an, principalement en France. Les risques liés à son utilisation sont cependant mal connus car en cas de contamination de l'environnement, on ne sait pas s'il est biodégradable. Cette étude avait pour but (i) d'évaluer la capacité de biodégradation du 2-EHN par des bactéries sélectionnées, (ii) d'élucider la voie de dégradation, et (iii) d'identifier les enzymes impliquées. Les tests de biodégradation prenant en compte le caractère toxique et hydrophobe du substrat on été mis au point dans un premier temps. A l'aide de ces tests qui reposent sur la mise en oeuvre de cultures biphasiques, nous avons montré que plusieurs souches de Mycobacterium austroafricanum étaient capables de dégrader le 2-EHN. La souche la plus performante (IFP 2173), résistant à des concentrations de 2-EHN de 6 g.L-1, a été choisie pour étudier la voie de dégradation. Sur la base de bilans carbone et d'analyse du milieu de culture par chromatographie gazeuse (CG), j'ai découvert que la dégradation du 2-EHN était incomplète et donnait lieu à l'accumulation d'un métabolite. Ce métabolite a été identifié comme étant la β-méthyl-γ-butyrolactone par des analyses de CG-MS et LC-MS/MS. La structure de cette lactone indiquait que le 2-EHN était dégradé selon une voie enzymatique impliquant l'hydroxylation du groupement méthyle de la chaîne carbonée principale, son oxydation en aldéhyde et acide, et enfin un cycle de β-oxydation. <br>Dans un deuxième temps, les enzymes impliquées dans la voie de dégradation du 2-EHN ont été recherchées par une approche protéomique. Des analyses par électrophorèse bidimensionnelle ont mis en évidence qu'en présence de 2-EHN, la souche IFP 2173 déclenche la synthèse d'une panoplie d'enzymes spécialisées dans le métabolisme des acides gras, comme les enzymes de la β-oxydation, des alcool et aldéhyde déshydrogénases. Une analyse exhaustive du protéome de la souche IFP 2173 a permis d'identifier par LC-MS/MS plus de 200 protéines induites sur 2-EHN, notamment un cytochrome P450 de type alcane monooxygénase (CYP153). En outre, j'ai également identifié et cloné les gènes codant deux alcanes hydroxylases transmembranaires de types AlkB, qui n'ont pas été détectées par l'approche protéomique. Ainsi, la souche IFP 2173 possède trois alcane hydroxylases susceptibles de catalyser l'attaque initiale du 2-EHN. Pour déterminer laquelle de ces trois monooxygénases était responsable de cette réaction, leur gène respectif a été cloné dans des plasmides conçus pour l'expression soit chez E. coli, soit chez M. smegmatis mc². Nos résultats préliminaires montrent que dans certains cas les protéines recombinantes sont bien synthétisées. Ces constructions seront employées pour étudier l'activité des trois hydroxylases de IFP 2173 vis-à-vis des alcanes et du 2-EHN en particulier.
|
229 |
Synthesen von Galactose-Cluster-haltigen Steroid-DerivatenPeter, Martin G., Boldt, Peter C., Niederstein, Yvonne, Jasna Peter-Katalinić January 1990 (has links)
The synthesis of galactose clusters that are linked to a steroid moiety by a peptide-like spacer unit is described. The galactose cluster is obtained by Koenigs-Knorr glycosylation of TRIS-Gly-Fmoc (2b) under Helferich conditions. Peptide and ester bonds are formed after activation of carboxylic acids as diphenylthiophene dioxide (TDO) esters. 6a is synthesized in a convergent way by coupling of (Ac4Gal)3-TRIS-Gly (3e) with cholesteryl TDO succinate (5b). Coupling of (Ac4Gal)3-TRIS-Gly hydrogen succinate (3f) with Gly-O-Chol (5d) by means of EEDQ yields 6d. Reaction of (Ac4Gal)3-TRIS-Gly-SUCC-O-TDO (3g) with 25-hydroxycholesterol leads in a linear sequence to the oxysterol derivative 6f. Selective cleavage of the acetyl groups from galactose units yields the known compound 6b and the new derivatives 6e and 6g.
|
230 |
Studies toward the synthesis of the A-B ring system of lavendamycin methyl esterHorn, Mark A. 03 June 2011 (has links)
The synthesis of 7-amino-2-methylquinoline-5-8-dione (17) and 7-amino-3-methylquinoline-5,8-dione (157) are described.7-Amino-3-methylquinoline-5,8-dione (157) was prepared via alkaline hydrolysis of 7-acetamido-3-methylquinoline5,8-dione (149). 7-Acetamido-3-methylquinoline-5,8-dione (149) was prepared via the Diels-Alder reaction of 2-acetamido-6-bromo-1,4-benzoquinone (6) and 2-methyl-2propenal dimethylhydrazone (110).7-Amino-2-methylquinoline-5,8-dione (17) was prepared by the acid hydrolysis of 7-(triphenylphosphineimino)-2methylquinoline-5,8-dione (16). 7-(Triphenylphosphineimino)2-methylquinoline-5,8-dione (16) was prepared by tie treatment of 7-azido-2-methylquinoline-5,3-dione (15) with triphenylphosphine. 7-Azido-2-methylquinoline-5,8-dione (15) was prepared by treating 7-bromo-2-methylquinoline-5,8-dione (14) with sodium azide. The structures of the new compounds 15, 16, 17,149 and 157 were confirmed using MP, NMR, IR, MS and HRMS data. NMR, IR and MS data for known compounds 10, 11, 12, 13 and 14 are included for future reference.Ball State UniversityMuncie, IN 47306
|
Page generated in 0.0801 seconds