• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 12
  • 12
  • 8
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation semi-paramétrique et application à l’évaluation de la biomasse d'anchois / Semiparametric estimation and application to evaluate anchovy biomass

Le, Thi Xuan Mai 16 March 2010 (has links)
Notre étude est motivée par un problème d'évaluation de la biomasse, c'est à dire de la densité des œufs d'anchois à l'instant de ponte dans le golfe de Biscay-Gascogne. Les données sont les densités, c'est à dire les poids d' œufs d'anchois par unité de surface dans le golfe, collectées lors de la campagne d'échantillonnage de 1994. Le problème consiste à estimer la densité des œufs d'anchois au moment de leur ponte et le taux de mortalité. Jusqu'à présent, ce problème a été résolu en ajustant les données précédentes à un modèle classique de mortalité exponentielle. Notre analyse montre que ce modèle n'est pas adapté aux données à cause de la grande variation spatial de la densité d'œufs au moment de ponte. Or pour les données considérées, les densités A(tj,kj) des œufs au moment de ponte diffèrent de façon aléatoire selon les zones géographiques de kj ponte. Nous proposons de modéliser les A(tj,kj) comme un échantillon issu d'une variable aléatoire d'espérance a0 et ayant une densité de probabilité fA, ce qui conduit au modèle de mortalité étendue (EEM) suivant : Y (tj,kj) = A (tj,kj) e-z0tj +e(tj,kj) Le problème que nous avons à étudier alors est d'estimer les paramètres du modèle et la densité fA. Nous résolvons ce problème en deux étapes; nous commençons par estimer les paramètres par des techniques de régression, puis nous estimons la densité fA en combinant l'estimation non-paramétrique de densité, avec l'estimation du paramètre z0 et avec éventuellement une déconvolution de densités. Les résultats des études en simulations que nous réalisons corroborent les résultats théorique de la consistance / The motivation of this study is to evaluate the anchovy biomass, that is estimate the egg densities at the spawning time and the mortality rate. The data are the anchovy egg densities that are the egg weights by area unit, collected in the Gascogne bay. The problem we are faced is to estimate from these data the egg densities at the spawning time. Until now, this is done by using the classical exponential mortality model. However, such model is inadequate for the data under consideration because of the great spatial variability of the egg densities at the spawning time. They are samples of generated by a r.v whose mathematical expectation is a0 and the probability density function is fA. Therefore, we propose an extended exponential mortality model Y (tj,kj) = A (tj,kj) e-z0tj +e(tj,kj) where A(tj,kj) and e(tj,kj) are i.i.d, with the random variables A and e being assumed to be independent. Then the problem consists in estimating the mortality rate and the probability density of the random variable . We solve this semiparametric estimation problem in two steps. First, we estimate the mortality rate by fitting an exponential mortality model to averaged data. Second, we estimate the density fA by combining nonparametric estimation method with deconvolution technique and estimate the parameter z0. Theoretical results of consistence of these estimates are corroborated by simulation studies
2

ESPACEMENTS BIDIMENSIONNELS ET DONNÉES ENTACHÉES D'ERREURS DANS L'ANALYSE DES PROCESSUS PONCTUELS SPATIAUX

Cucala, Lionel 08 December 2006 (has links) (PDF)
CETTE THÈSE S'INTÉRESSE À DEUX GRANDES QUESTIONS DES PROCESSUS PONCTUELS SPATIAUX: LES ASPECTS DISTRIBUTIONNELS DES ESPACEMENTS ET L'ESTIMATION DE L'INTENSITÉ D'UN PROCESSUS PONCTUEL BRUITÉ.LA PREMIÈRE PARTIE CONCERNE LA CONSTRUCTION DE TESTS D'HOMOGÉNÉITÉ SPATIALE BASÉS SUR LES ESPACEMENTS. ENSUITE NOUS NOUS INTÉRESSONS À LA RECHERCHE D'AGRÉGATS (ZONES DE FORTE INTENSITÉ) À L'AIDE DE CES MEMES ESPACEMENTS. LA DEUXIÈME QUESTION EST ELLE TRAITÉE PAR L'INTRODUCTION D'UN ESTIMATEUR À NOYAU PRENANT EN COMPTE À LA FOIS L'INCERTITUDE SUR LES LOCALISATIONS DES ÉVÉNEMENTS ET L'OBSERVATION SUR UN DOMAINE LIMITÉ.
3

Développement de modèles non paramétriques et robustes : application à l’analyse du comportement de bivalves et à l’analyse de liaison génétique

Sow, Mohamedou 20 May 2011 (has links)
Le développement des approches robustes et non paramétriques pour l’analyse et le traitement statistique de gros volumes de données présentant une forte variabilité,comme dans les domaines de l’environnement et de la génétique, est fondamental.Nous modélisons ici des données complexes de biologie appliquées à l’étude du comportement de bivalves et à l’analyse de liaison génétique. L’application des mathématiques à l’analyse du comportement de mollusques bivalves nous a permis d’aller vers une quantification et une traduction mathématique de comportements d’animaux in-situ, en milieu proche ou lointain. Nous avons proposé un modèle de régression non paramétrique et comparé 3 estimateurs non paramétriques, récursifs ou non,de la fonction de régression pour optimiser le meilleur estimateur. Nous avons ensuite caractérisé des rythmes biologiques, formalisé l’évolution d’états d’ouvertures,proposé des méthodes de discrimination de comportements, utilisé la méthode des shot-noises pour caractériser différents états d’ouverture-fermetures transitoires et développé une méthode originale de mesure de croissance en ligne.En génétique, nous avons abordé un cadre plus général de statistiques robustes pour l’analyse de liaison génétique. Nous avons développé des estimateurs robustes aux hypothèses de normalités et à la présence de valeurs aberrantes, nous avons aussi utilisé une approche statistique, où nous avons abordé la dépendance entre variables aléatoires via la théorie des copules. Nos principaux résultats ont montré l’intérêt pratique de ces estimateurs sur des données réelles de QTL et eQTL. / The development of robust and nonparametric approaches for the analysis and statistical treatment of high-dimensional data sets exhibiting high variability, as seen in the environmental and genetic fields, is instrumental. Here, we model complex biological data with application to the analysis of bivalves’ behavior and to linkage analysis. The application of mathematics to the analysis of mollusk bivalves’behavior gave us the possibility to quantify and translate mathematically the animals’behavior in situ, in close or far field. We proposed a nonparametric regression model and compared three nonparametric estimators (recursive or not) of the regressionfunction to optimize the best estimator. We then characterized the biological rhythms, formalized the states of opening, proposed methods able to discriminate the behaviors, used shot-noise analysis to characterize various opening/closing transitory states and developed an original approach for measuring online growth.In genetics, we proposed a more general framework of robust statistics for linkage analysis. We developed estimators robust to distribution assumptions and the presence of outlier observations. We also used a statistical approach where the dependence between random variables is specified through copula theory. Our main results showed the practical interest of these estimators on real data for QTL and eQTL analysis.
4

Efficient inference and learning in graphical models for multi-organ shape segmentation / Inférence efficace et apprentissage des modèles graphiques pour la segmentation des formes multi-organes

Boussaid, Haithem 08 January 2015 (has links)
Cette thèse explore l’utilisation des modèles de contours déformables pour la segmentation basée sur la forme des images médicales. Nous apportons des contributions sur deux fronts: dans le problème de l’apprentissage statistique, où le modèle est formé à partir d’un ensemble d’images annotées, et le problème de l’inférence, dont le but est de segmenter une image étant donnée un modèle. Nous démontrons le mérite de nos techniques sur une grande base d’images à rayons X, où nous obtenons des améliorations systématiques et des accélérations par rapport à la méthode de l’état de l’art. Concernant l’apprentissage, nous formulons la formation de la fonction de score des modèles de contours déformables en un problème de prédiction structurée à grande marge et construisons une fonction d’apprentissage qui vise à donner le plus haut score à la configuration vérité-terrain. Nous intégrons une fonction de perte adaptée à la prédiction structurée pour les modèles de contours déformables. En particulier, nous considérons l’apprentissage avec la mesure de performance consistant en la distance moyenne entre contours, comme une fonction de perte. L’utilisation de cette fonction de perte au cours de l’apprentissage revient à classer chaque contour candidat selon sa distance moyenne du contour vérité-terrain. Notre apprentissage des modèles de contours déformables en utilisant la prédiction structurée avec la fonction zéro-un de perte surpasse la méthode [Seghers et al. 2007] de référence sur la base d’images médicales considérée [Shiraishi et al. 2000, van Ginneken et al. 2006]. Nous démontrons que l’apprentissage avec la fonction de perte de distance moyenne entre contours améliore encore plus les résultats produits avec l’apprentissage utilisant la fonction zéro-un de perte et ce d’une quantité statistiquement significative.Concernant l’inférence, nous proposons des solveurs efficaces et adaptés aux problèmes combinatoires à variables spatiales discrétisées. Nos contributions sont triples: d’abord, nous considérons le problème d’inférence pour des modèles graphiques qui contiennent des boucles, ne faisant aucune hypothèse sur la topologie du graphe sous-jacent. Nous utilisons un algorithme de décomposition-coordination efficace pour résoudre le problème d’optimisation résultant: nous décomposons le graphe du modèle en un ensemble de sous-graphes en forme de chaines ouvertes. Nous employons la Méthode de direction alternée des multiplicateurs (ADMM) pour réparer les incohérences des solutions individuelles. Même si ADMM est une méthode d’inférence approximative, nous montrons empiriquement que notre implémentation fournit une solution exacte pour les exemples considérés. Deuxièmement, nous accélérons l’optimisation des modèles graphiques en forme de chaîne en utilisant l’algorithme de recherche hiérarchique A* [Felzenszwalb & Mcallester 2007] couplé avec les techniques d’élagage développés dans [Kokkinos 2011a]. Nous réalisons une accélération de 10 fois en moyenne par rapport à l’état de l’art qui est basé sur la programmation dynamique (DP) couplé avec les transformées de distances généralisées [Felzenszwalb & Huttenlocher 2004]. Troisièmement, nous intégrons A* dans le schéma d’ADMM pour garantir une optimisation efficace des sous-problèmes en forme de chaine. En outre, l’algorithme résultant est adapté pour résoudre les problèmes d’inférence augmentée par une fonction de perte qui se pose lors de l’apprentissage de prédiction des structure, et est donc utilisé lors de l’apprentissage et de l’inférence. [...] / This thesis explores the use of discriminatively trained deformable contour models (DCMs) for shape-based segmentation in medical images. We make contributions in two fronts: in the learning problem, where the model is trained from a set of annotated images, and in the inference problem, whose aim is to segment an image given a model. We demonstrate the merit of our techniques in a large X-Ray image segmentation benchmark, where we obtain systematic improvements in accuracy and speedups over the current state-of-the-art. For learning, we formulate training the DCM scoring function as large-margin structured prediction and construct a training objective that aims at giving the highest score to the ground-truth contour configuration. We incorporate a loss function adapted to DCM-based structured prediction. In particular, we consider training with the Mean Contour Distance (MCD) performance measure. Using this loss function during training amounts to scoring each candidate contour according to its Mean Contour Distance to the ground truth configuration. Training DCMs using structured prediction with the standard zero-one loss already outperforms the current state-of-the-art method [Seghers et al. 2007] on the considered medical benchmark [Shiraishi et al. 2000, van Ginneken et al. 2006]. We demonstrate that training with the MCD structured loss further improves over the generic zero-one loss results by a statistically significant amount. For inference, we propose efficient solvers adapted to combinatorial problems with discretized spatial variables. Our contributions are three-fold:first, we consider inference for loopy graphical models, making no assumption about the underlying graph topology. We use an efficient decomposition-coordination algorithm to solve the resulting optimization problem: we decompose the model’s graph into a set of open, chain-structured graphs. We employ the Alternating Direction Method of Multipliers (ADMM) to fix the potential inconsistencies of the individual solutions. Even-though ADMMis an approximate inference scheme, we show empirically that our implementation delivers the exact solution for the considered examples. Second,we accelerate optimization of chain-structured graphical models by using the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] couple dwith the pruning techniques developed in [Kokkinos 2011a]. We achieve a one order of magnitude speedup in average over the state-of-the-art technique based on Dynamic Programming (DP) coupled with Generalized DistanceTransforms (GDTs) [Felzenszwalb & Huttenlocher 2004]. Third, we incorporate the Hierarchical A∗ algorithm in the ADMM scheme to guarantee an efficient optimization of the underlying chain structured subproblems. The resulting algorithm is naturally adapted to solve the loss-augmented inference problem in structured prediction learning, and hence is used during training and inference. In Appendix A, we consider the case of 3D data and we develop an efficientmethod to find the mode of a 3D kernel density distribution. Our algorithm has guaranteed convergence to the global optimum, and scales logarithmically in the volume size by virtue of recursively subdividing the search space. We use this method to rapidly initialize 3D brain tumor segmentation where we demonstrate substantial acceleration with respect to a standard mean-shift implementation. In Appendix B, we describe in more details our extension of the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] to inference on chain-structured graphs.
5

Estimation non paramétrique pour les processus markoviens déterministes par morceaux

Azaïs, Romain 01 July 2013 (has links) (PDF)
M.H.A. Davis a introduit les processus markoviens déterministes par morceaux (PDMP) comme une classe générale de modèles stochastiques non diffusifs, donnant lieu à des trajectoires déterministes ponctuées, à des instants aléatoires, par des sauts aléatoires. Dans cette thèse, nous présentons et analysons des estimateurs non paramétriques des lois conditionnelles des deux aléas intervenant dans la dynamique de tels processus. Plus précisément, dans le cadre d'une observation en temps long de la trajectoire d'un PDMP, nous présentons des estimateurs de la densité conditionnelle des temps inter-sauts et du noyau de Markov qui gouverne la loi des sauts. Nous établissons des résultats de convergence pour nos estimateurs. Des simulations numériques pour différentes applications illustrent nos résultats. Nous proposons également un estimateur du taux de saut pour des processus de renouvellement, ainsi qu'une méthode d'approximation numérique pour un modèle de régression semi-paramétrique.
6

Méthodes statistiques pour l’estimation du rendement paramétrique des circuits intégrés analogiques et RF / Statistical methods for the parametric yield estimation of analog/RF integratedcircuits

Desrumaux, Pierre-François 08 November 2013 (has links)
De nombreuses sources de variabilité impactent la fabrication des circuits intégrés analogiques et RF et peuvent conduire à une dégradation du rendement. Il est donc nécessaire de mesurer leur influence le plus tôt possible dans le processus de fabrications. Les méthodes de simulation statistiques permettent ainsi d'estimer le rendement paramétrique des circuits durant la phase de conception. Cependant, les méthodes traditionnelles telles que la méthode de Monte Carlo ne sont pas assez précises lorsqu'un faible nombre de circuits est simulé. Par conséquent, il est nécessaire de créer un estimateur précis du rendement paramétrique basé sur un faible nombre de simulations. Dans cette thèse, les méthodes statistiques existantes provenant à la fois de publications en électroniques et non-Électroniques sont d'abord décrites et leurs limites sont mises en avant. Ensuite, trois nouveaux estimateurs de rendement sont proposés: une méthode de type quasi-Monte Carlo avec tri automatique des dimensions, une méthode des variables de contrôle basée sur l'estimation par noyau, et une méthode par tirage d'importance. Les trois méthodes reposent sur un modèle mathématique de la métrique de performance du circuit qui est construit à partir d'un développement de Taylor à l'ordre un. Les résultats théoriques et expérimentaux obtenus démontrent la supériorité des méthodes proposées par rapport aux méthodes existantes, à la fois en terme de précision de l'estimateur et en terme de réduction du nombre de simulations de circuits. / Semiconductor device fabrication is a complex process which is subject to various sources of variability. These variations can impact the functionality and performance of analog integrated circuits, which leads to yield loss, potential chip modifications, delayed time to market and reduced profit. Statistical circuit simulation methods enable to estimate the parametric yield of the circuit early in the design stage so that corrections can be done before manufacturing. However, traditional methods such as Monte Carlo method and corner simulation have limitations. Therefore an accurate analog yield estimate based on a small number of circuit simulations is needed. In this thesis, existing statistical methods from electronics and non-Electronics publications are first described. However, these methods suffer from sever drawbacks such as the need of initial time-Consuming circuit simulations, or a poor scaling with the number of random variables. Second, three novel statistical methods are proposed to accurately estimate the parametric yield of analog/RF integrated circuits based on a moderate number of circuit simulations: An automatically sorted quasi-Monte Carlo method, a kernel-Based control variates method and an importance sampling method. The three methods rely on a mathematical model of the circuit performance metric which is constructed based on a truncated first-Order Taylor expansion. This modeling technique is selected as it requires a minimal number of SPICE-Like circuit simulations. Both theoretical and simulation results show that the proposed methods lead to significant speedup or improvement in accuracy compared to other existing methods.
7

Estimation récursive pour les modèles semi-paramétriques

Nguyen, Thi Mong Ngoc 26 November 2010 (has links) (PDF)
Dans cette th ese, nous nous int eressons au mod ele semi-param etrique de r egression de la forme y = f( \theta'x; \epsilon), lorsque x \in R^p et y\in R. Notre objectif est d' etudier des probl emes d'estimation des param etres \theta et f de ce mod ele avec des m ethodes r ecursives. Dans la premi ere partie, l'approche que nous d eveloppons est fond ee sur une m ethode introduite par Li (1991), appel ee Sliced Inverse Regression (SIR). Nous proposons des m ethodes SIR r ecursives pour estimer le param etre . Dans le cas particulier o u l'on consid ere le nombre de tranches egal a 2, il est possible d'obtenir une expression analytique de l'estimateur de la direction de . Nous proposons une forme r ecursive pour cet estimateur, ainsi qu'une forme r ecursive de l'estimateur de la matrice d'int er^et. Ensuite, nous proposons une nouvelle approche appell ee \SIRoneslice" (r ecursive ou non r ecursive) de la m ethode SIR bas ee sur l'utilisation de l'information contenue dans une seule tranche optimale (qu'il faudra choisir parmi un nombre quelconque de tranches). Nous proposons egalement un crit ere \bootstrap na f" pour le choix du nombre de tranches. Des r esultats asymptotiques sont donn es et une etude sur des simulations d emontre le bon comportement num erique des approches r ecursives propos ees et l'avantage principal de l'utilisation la version r ecursive de SIR et de SIRoneslice du point de vue des temps de calcul. Dans la second partie, nous travaillons sur des donn ees de valvom etrie mesur ees sur des bivalves. Sur ces donn ees, nous comparons le comportement num erique de trois estimateurs non param etrique de la fonction de r egression : celui de Nadaraya-Watson, celui de Nadaraya-Watson r ecursif et celui de R ev esz qui est lui aussi r ecursif. Dans la derni ere partie de cette th ese, nous proposons une m ethode permettant de combiner l'estimation r ecursive de la fonction de lien f par l'estimateur de Nadaraya- Watson r ecursif et l'estimation du param etre via l'estimateur SIR r ecursif. Nous etablissons une loi des grands nombres ainsi qu'un th eor eme de limite centrale. Nous illustrons ces r esultats th eoriques par des simulations montrant le bon comportement num erique de la m ethode d'estimation propos ee.
8

Estimation non paramétrique pour les processus markoviens déterministes par morceaux / Nonparametric estimation for piecewise-deterministic Markov processes

Azaïs, Romain 01 July 2013 (has links)
M.H.A. Davis a introduit les processus markoviens déterministes par morceaux (PDMP) comme une classe générale de modèles stochastiques non diffusifs, donnant lieu à des trajectoires déterministes ponctuées, à des instants aléatoires, par des sauts aléatoires. Dans cette thèse, nous présentons et analysons des estimateurs non paramétriques des lois conditionnelles des deux aléas intervenant dans la dynamique de tels processus. Plus précisément, dans le cadre d'une observation en temps long de la trajectoire d'un PDMP, nous présentons des estimateurs de la densité conditionnelle des temps inter-sauts et du noyau de Markov qui gouverne la loi des sauts. Nous établissons des résultats de convergence pour nos estimateurs. Des simulations numériques pour différentes applications illustrent nos résultats. Nous proposons également un estimateur du taux de saut pour des processus de renouvellement, ainsi qu'une méthode d'approximation numérique pour un modèle de régression semi-paramétrique. / Piecewise-deterministic Markov processes (PDMP’s) have been introduced by M.H.A. Davis as a general family of non-diffusion stochastic models, involving deterministic motion punctuated by random jumps at random times. In this thesis, we propose and analyze nonparametric estimation methods for both the features governing the randomness of such a process. More precisely, we present estimators of the conditional density of the inter-jumping times and of the transition kernel for a PDMP observed within a long time interval. We establish some convergence results for both the proposed estimators. In addition, numerical simulations illustrate our theoretical results. Furthermore, we propose an estimator for the jump rate of a nonhomogeneous renewal process and a numerical approximation method based on optimal quantization for a semiparametric regression model.
9

Reflection Symmetry Detection in Images : Application to Photography Analysis / Détection de symétrie réflexion dans les images : application à l'analyse photographique

Elsayed Elawady, Mohamed 29 March 2019 (has links)
La symétrie est une propriété géométrique importante en perception visuelle qui traduit notre perception des correspondances entre les différents objets ou formes présents dans une scène. Elle est utilisée comme élément caractéristique dans de nombreuses applications de la vision par ordinateur (comme par exemple la détection, la segmentation ou la reconnaissance d'objets) mais également comme une caractéristique formelle en sciences de l'art (ou en analyse esthétique). D’importants progrès ont été réalisés ces dernières décennies pour la détection de la symétrie dans les images mais il reste encore de nombreux verrous à lever. Dans cette thèse, nous nous intéressons à la détection des symétries de réflexion, dans des images réelles, à l'échelle globale. Nos principales contributions concernent les étapes d'extraction de caractéristiques et de représentation globale des axes de symétrie. Nous proposons d'abord une nouvelle méthode d'extraction de segments de contours à l'aide de bancs de filtres de Gabor logarithmiques et une mesure de symétrie intersegments basée sur des caractéristiques locales de forme, de texture et de couleur. Cette méthode a remporté la première place à la dernière compétition internationale de symétrie pour la détection mono- et multi-axes. Notre deuxième contribution concerne une nouvelle méthode de représentation des axes de symétrie dans un espace linéaire-directionnel. Les propriétés de symétrie sont représentées sous la forme d'une densité de probabilité qui peut être estimée, de manière non-paramétrique, par une méthode à noyauxbasée sur la distribution de Von Mises-Fisher. Nous montrons que la détection des axes dominants peut ensuite être réalisée à partir d'un algorithme de type "mean-shift” associé à une distance adaptée. Nous introduisons également une nouvelle base d'images pour la détection de symétrie mono-axe dans des photographies professionnelles issue de la base à grande échelle AVA (Aestetic Visual Analysis). Nos différentes contributions obtiennent des résultats meilleurs que les algorithmes de l'état de l'art, évalués sur toutes les bases disponibles publiquement, spécialement dans le cas multi-axes. Nous concluons que les propriétés de symétrie peuvent être utilisées comme des caractéristiques visuelles de niveau sémantique intermédiaire pour l'analyse et la compréhension de photographies. / Symmetry is a fundamental principle of the visual perception to feel the equally distributed weights within foreground objects inside an image. It is used as a significant visual feature through various computer vision applications (i.e. object detection and segmentation), plus as an important composition measure in art domain (i.e. aesthetic analysis). The development of symmetry detection has been improved rapidly since last century. In this thesis, we mainly aim to propose new approaches to detect reflection symmetry inside real-world images in a global scale. In particular, our main contributions concern feature extraction and globalrepresentation of symmetry axes. First, we propose a novel approach that detects global salient edges inside an image using Log-Gabor filter banks, and defines symmetry oriented similarity through textural and color around these edges. This method wins a recent symmetry competition worldwide in single and multiple cases.Second, we introduce a weighted kernel density estimator to represent linear and directional symmetrical candidates in a continuous way, then propose a joint Gaussian-vonMises distance inside the mean-shift algorithm, to select the relevant symmetry axis candidates along side with their symmetrical densities. In addition, we introduce a new challenging dataset of single symmetry axes inside artistic photographies extracted from the large-scale Aesthetic Visual Analysis (AVA) dataset. The proposed contributions obtain superior results against state-of-art algorithms among all public datasets, especially multiple cases in a global scale. We conclude that the spatial and context information of each candidate axis inside an image can be used as a local or global symmetry measure for further image analysis and scene understanding purposes.
10

An integrated GIS-based and spatiotemporal analysis of traffic accidents: a case study in Sherbrooke

Harirforoush, Homayoun January 2017 (has links)
Abstract: Road traffic accidents claim more than 1,500 lives each year in Canada and affect society adversely, so transport authorities must reduce their impact. This is a major concern in Quebec, where the traffic-accident risks increase year by year proportionally to provincial population growth. In reality, the occurrence of traffic crashes is rarely random in space-time; they tend to cluster in specific areas such as intersections, ramps, and work zones. Moreover, weather stands out as an environmental risk factor that affects the crash rate. Therefore, traffic-safety engineers need to accurately identify the location and time of traffic accidents. The occurrence of such accidents actually is determined by some important factors, including traffic volume, weather conditions, and geometric design. This study aimed at identifying hotspot locations based on a historical crash data set and spatiotemporal patterns of traffic accidents with a view to improving road safety. This thesis proposes two new methods for identifying hotspot locations on a road network. The first method could be used to identify and rank hotspot locations in cases in which the value of traffic volume is available, while the second method is useful in cases in which the value of traffic volume is not. These methods were examined with three years of traffic-accident data (2011–2013) in Sherbrooke. The first method proposes a two-step integrated approach for identifying traffic-accident hotspots on a road network. The first step included a spatial-analysis method called network kernel-density estimation. The second step involved a network-screening method using the critical crash rate, which is described in the Highway Safety Manual. Once the traffic-accident density had been estimated using the network kernel-density estimation method, the selected potential hotspot locations were then tested with the critical-crash-rate method. The second method offers an integrated approach to analyzing spatial and temporal (spatiotemporal) patterns of traffic accidents and organizes them according to their level of significance. The spatiotemporal seasonal patterns of traffic accidents were analyzed using the kernel-density estimation; it was then applied as the attribute for a significance test using the local Moran’s I index value. The results of the first method demonstrated that over 90% of hotspot locations in Sherbrooke were located at intersections and in a downtown area with significant conflicts between road users. It also showed that signalized intersections were more dangerous than unsignalized ones; over half (58%) of the hotspot locations were located at four-leg signalized intersections. The results of the second method show that crash patterns varied according to season and during certain time periods. Total seasonal patterns revealed denser trends and patterns during the summer, fall, and winter, then a steady trend and pattern during the spring. Our findings also illustrated that crash patterns that applied accident severity were denser than the results that only involved the observed crash counts. The results clearly show that the proposed methods could assist transport authorities in quickly identifying the most hazardous sites in a road network, prioritizing hotspot locations in a decreasing order more efficiently, and assessing the relationship between traffic accidents and seasons. / Les accidents de la route sont responsables de plus de 1500 décès par année au Canada et ont des effets néfastes sur la société. Aux yeux des autorités en transport, il devient impératif d’en réduire les impacts. Il s’agit d’une préoccupation majeure au Québec depuis que les risques d’accidents augmentent chaque année au rythme de la population. En réalité, les accidents routiers se produisent rarement de façon aléatoire dans l’espace-temps. Ils surviennent généralement à des endroits spécifiques notamment aux intersections, dans les bretelles d’accès, sur les chantiers routiers, etc. De plus, les conditions climatiques associées aux saisons constituent l’un des facteurs environnementaux à risque affectant les taux d’accidents. Par conséquent, il devient impératif pour les ingénieurs en sécurité routière de localiser ces accidents de façon plus précise dans le temps (moment) et dans l’espace (endroit). Cependant, les accidents routiers sont influencés par d’importants facteurs comme le volume de circulation, les conditions climatiques, la géométrie de la route, etc. Le but de cette étude consiste donc à identifier les points chauds au moyen d’un historique des données d’accidents et de leurs répartitions spatiotemporelles en vue d’améliorer la sécurité routière. Cette thèse propose deux nouvelles méthodes permettant d’identifier les points chauds à l’intérieur d’un réseau routier. La première méthode peut être utilisée afin d’identifier et de prioriser les points chauds dans les cas où les données sur le volume de circulation sont disponibles alors que la deuxième méthode est utile dans les cas où ces informations sont absentes. Ces méthodes ont été conçues en utilisant des données d’accidents sur trois ans (2011-2013) survenus à Sherbrooke. La première méthode propose une approche intégrée en deux étapes afin d’identifier les points chauds au sein du réseau routier. La première étape s’appuie sur une méthode d’analyse spatiale connue sous le nom d’estimation par noyau. La deuxième étape repose sur une méthode de balayage du réseau routier en utilisant les taux critiques d’accidents, une démarche éprouvée et décrite dans le manuel de sécurité routière. Lorsque la densité des accidents routiers a été calculée au moyen de l’estimation par noyau, les points chauds potentiels sont ensuite testés à l’aide des taux critiques. La seconde méthode propose une approche intégrée destinée à analyser les distributions spatiales et temporelles des accidents et à les classer selon leur niveau de signification. La répartition des accidents selon les saisons a été analysée à l’aide de l’estimation par noyau, puis ces valeurs ont été assignées comme attributs dans le test de signification de Moran. Les résultats de la première méthode démontrent que plus de 90 % des points chauds à Sherbrooke sont concentrés aux intersections et au centre-ville où les conflits entre les usagers de la route sont élevés. Ils révèlent aussi que les intersections contrôlées sont plus à risque par comparaison aux intersections non contrôlées et que plus de la moitié des points chauds (58 %) sont situés aux intersections à quatre branches (en croix). Les résultats de la deuxième méthode montrent que les distributions d’accidents varient selon les saisons et à certains moments de l’année. Les répartitions saisonnières montrent des tendances à la densification durant l’été, l’automne et l’hiver alors que les distributions sont plus dispersées au cours du printemps. Nos observations indiquent aussi que les répartitions ayant considéré la sévérité des accidents sont plus denses que les résultats ayant recours au simple cumul des accidents. Les résultats démontrent clairement que les méthodes proposées peuvent: premièrement, aider les autorités en transport en identifiant rapidement les sites les plus à risque à l’intérieur du réseau routier; deuxièmement, prioriser les points chauds en ordre décroissant plus efficacement et de manière significative; troisièmement, estimer l’interrelation entre les accidents routiers et les saisons.

Page generated in 0.1266 seconds