• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthode des éléments finis mixte duale pour les problèmes de l'élasticité et de l'élastodynamique: analyse d'erreur à priori et à posteriori.

Boulaajine, Lahcen 10 July 2006 (has links) (PDF)
Dans ce travail, nous étudions le raffinement de maillage pour des méthodes d'éléments finis mixtes duales pour deux types de problèmes : le premier concerne le problème de l'élasticité linéaire et le second problème celui de l'élastodynamique.<br /> <br /> Pour ces deux types de problèmes et dans des domaines non réguliers, les méthodes d'éléments finis mixtes analysées jusqu'à présent, sont celles qui concernent des méthodes mixtes "classiques". Ici, nous analysons la formulation mixte duale pour les deux problèmes de l'élasticité linéaire et de l'élastodynamique. <br /> Pour le problème d'élasticité, nous sommes concernés premièrement par une analyse a priori d'erreur en utilisant l'approximation par l'élément fini $BDM_1$ stabilisé. Afin de dériver une estimation a priori optimales d'erreur, nous établissons des règles de raffinement de maillage. <br /> Ensuite, nous faisons une analyse d'erreur à posteriori sur un domaine simplement ou multiplement connexe. En fait nous établissons un estimateur résiduel fiable et efficace. Cet estimateur est alors utilisé dans un algorithme adaptatif pour le raffinement automatique de maillage. Pour le problème de l'élastodynamique, nous faisons une analyse a priori d'erreur en utilisant le même élément fini que pour le problème d'élasticité, en utilisant une formulation mixte duale pour la discrétisation des variables spatiales. <br /> Pour la discrétisation en temps nous étudions les deux schémas de Newmark explicite et implicite. Par des règles de raffinement de maillage appropriées, nous dérivons des estimées d'erreur optimales pour les deux schémas numérique.
2

Développement et analyse de méthodes adaptatives pour les équations de transport

Campos Pinto, Martin 18 November 2005 (has links) (PDF)
Les résultats présentés dans cette thèse portent sur l'approximation adaptative de deux problèmes de transport non-linéaire : le système de Vlasov-Poisson et les lois de conservation scalaires. Pour le premier, et dans une approche semi-lagrangienne, on a proposé un schéma adaptatif original à base d'éléments finis hiérarchiques où l'évolution des maillages est réalisée par une étape de prédiction très simple suivie d'une étape de correction plus classique. En introduisant la notion de courbure totale pour étendre la semi-norme W2,1(R2) aux fonctions affines par morceaux, on a alors établi une estimation d'erreur a priori prouvant la convergence de ce schéma en distance L∞, et donné des éléments de preuve concernant sa complexité optimale. Les lois de conservations scalaire ne pouvant être approchées en distance L∞, on a considéré leur analyse en distance uniforme de Hausdorff, moins répandue bien que plus géométrique. Après avoir montré que les solutions de ces équations étaient stables vis-à-vis de cette distance, on a établi un résultat d'approximation adaptative d'ordre élevé.
3

Modélisation, analyse et simulation de problèmes de contact en mécanique des solides et des fluides.

Lleras, Vanessa 20 November 2009 (has links) (PDF)
La modélisation des problèmes de contact pose de sérieuses difficultés qu'elles soient conceptuelles, mathématiques ou informatiques. Motivés par le rôle fondamental que jouent les phénomènes de contact, nous nous intéressons à la modélisation, l'analyse et la simulation de problèmes de contact intervenant en mécanique des solides et des fluides. Dans une première partie théorique, on étudie le comportement asymptotique de solutions de problèmes variationnels dépendant du temps issus de la mécanique du contact frottant. La deuxième partie est consacrée au contrôle de la qualité des calculs en mécanique des solides. Guidés par la recherche de la formulation et l'étude du contact dans la méthode des éléments finis étendus (XFEM), nous étudions notamment les estimateurs d'erreur par résidu pour la méthode XFEM dans le cas linéaire, ceux pour le problème de contact unilatéral avec frottement de Coulomb approchés par une méthode d'éléments finis standard et l'extension au cas de méthodes mixtes stabilisées (i.e., ne nécessitant pas de condition inf-sup). Cette partie s'achève par la définition du problème de contact avec XFEM suivie d'une estimation a priori de l'erreur. La troisième partie concerne la simulation numérique en mécanique des fluides, plus précisément du problème de contact de la dynamique des globules rouges évoluant dans un fluide régi par les équations de Navier-Stokes en dimension deux.
4

Méthode d'éléments finis mixtes :application aux équations de la chaleur et de Stokes instationnaires

Korikache, Réda 15 November 2007 (has links) (PDF)
Dans ce travail on se propose d'établir des estimations d'erreurs a priori pour les solutions approchées d'équations d'évolution obtenues par la méthode d'éléments finis mixte duale en espace et ce pour trois types de problèmes : le premier concerne le problème de Cauchy pour l'équation de diffusion de la chaleur, le second est le problème de Stokes instationnaire, et le dernier concerne le problème de Cauchy pour l'équation de diffusion de la chaleur mais avec un coefficient de diffusion aléatoire. Pour ces trois types de problèmes, il y a un certain nombre de raisons de préférer la méthode mixte duale en espace à une méthode classique en espace ; parmi elles la propriété fondamentale qu'est la conservation locale, et par suite globale, de certaines quantités physiques (la quantité de mouvement, la masse, la quantité de chaleur,...). Une autre raison bien connue pour adopter la méthode mixte duale en espace est qu'elle nous permet d'introduire des nouvelles variables : p(t) =grad u(t) le flux de chaleur à l'instant t pour l'équation de diffusion de la chaleur, p(t) = K ◊ u(t) le flux de chaleur à l'instant t pour l'équation de diffusion de la chaleur avec un coefficient de diffusion aléatoire K, ◊ dénotant le produit de Wick, σ = grad u(t) le tenseur gradient du champ des vitesses à l'instant t pour le problème de Stokes instationnaire, ces inconnues supplémentaires ayant un sens physique et une importance particulière pour plus d'une application. Il est donc important de disposer d'une méthode numérique donnant aussi de bonnes approximations de ces quantités.

Page generated in 0.1777 seconds