• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular analysis of ethylene signal transduction in tomato

Adams-Phillips, Lori C. 17 February 2005 (has links)
The plant hormone ethylene plays an important role in plant growth, development, and physiology. One of the critical components of the ethylene signal transduction pathway, ctr1 (constitutive triple response), was identified using a particularly useful seedling screen that takes advantage of the profound effects ethylene has on etiolated seedlings, known as triple response. CTR1 is one of six Arabidopsis MAPKKKs that are related to the Raf kinases, and acts as a negative regulator of ethylene response. In this study, isolation and characterization of a family of CTR1-like genes in tomato is reported. Based on amino acid alignments and phylogenetic analysis, the tomato CTR1-like (LeCTR) genes are more similar to Arabidopsis CTR1 (AtCTR1) than any other MAPKKK sequences in the Arabidopsis genome. The capacity of the LeCTR genes to function as negative regulators in ethylene signal transduction was tested through complementation of the Arabidopsis ctr1-8 mutant. Quantitative real-time PCR was carried out to generate an expression profile for the CTR1-like gene family during different stages of development marked by increased ethylene biosynthesis, including fruit ripening. The possibility of a multi-gene family of CTR1-like genes in other species besides tomato was examined through mining of EST and genomic sequence databases. Based on nucleotide and amino acid identity, At4g24480 is most similar to AtCTR1 and could potentially represent a CTR1-like gene in Arabidopsis. Arabidopsis plants carrying a T-DNA insert in the At4g24480 locus were examined for abnormal ethylene response phenotypes including sensitivity to other hormones, signal molecules and abiotic stresses. Two mutant alleles, ctr1-1 and ctr1-8, containing mutations that disrupt kinase activity and receptor association, respectively, were examined for sensitivity to these same treatments in an effort to better characterize ethylene hormone and non-hormone interactions. They also served as controls to determine if At4g24480 indeed possessed CTR1-like function. Arabidopsis and tomato represent species with very distinct fruit ripening/maturation programs. The critical dependence on ethylene for fruit ripening in tomato might have resulted in alteration or modification of the ethylene signal transduction pathway relative to Arabidopsis. Plans to characterize individual functions of the LeCTR genes through over-expression and reduced expression in tomato are outlined.
2

The Role of Mitogen-activated Protein Kinases in the Regulation of Plant Development

Satterfield, Erica 10 April 2009 (has links)
Mitogen-activated protein kinases are part of an evolutionarily conserved protein phosphorylation cascade which serves essential regulatory functions in eukaryotic organisms. Although the role of MAPKs in the regulation of a plant’s response to environmental stress and plant defense has been well established, very little is known about their role in the regulation of plant developmental processes. In order to examine the role of MAPKs in plant growth and development, a strong mammalian MAPK phosphatase (MKP-1), which is known to inactivate MAPKs in plants, was introduced into tobacco plants. In tobacco plants, MKP-1 overexpression altered plant responses to the phytohormones, ethylene and cytokinin. Tobacco plants expressing MKP-1 flowered earlier and senesced later than wild-type. Additionally, these plants exhibited similar floral morphology as flowers from ethylene-insensitive tobacco plants. These observed phenotypes seem to depend on the protein phosphatase activity, as transgenic lines expressing an inactive form of MKP-1 (MKPCS) did not show the same phenotypes. Furthermore, both tobacco and Arabidopsis MKP-1 transgenic plants exhibited increased shoot regeneration when compared to wild-type plants, suggesting increased cytokinin sensitivity. In an attempt to elucidate the mechanism by which MKP-1 affects plant growth and development, expression of selected genes were analyzed using RT-PCR. MKP-1 transformed tobacco plants exhibited downregulated expression of an ethylene biosynthesis gene (NtACO) and upregulated expression of a pathogenesis-related gene (PR-1b), similar to gene expression studies previously conducted in plants with increased production of cytokinin. The same MKP-1 transgenic plants also exhibited upregulated expression of the flowering time gene, FT. Results from this study indicate that constitutive expression of MKP-1 may interfere with ethylene-related MAPK pathways, which normally serves to restrict plant growth during times of environmental stress. The reduced responses to ethylene resulted in elevated sensitivity to cytokinin, promoting an enhanced shoot regeneration phenotype.

Page generated in 0.1284 seconds