• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solid State Diffusion Kinetics of Intermetallic Compound Formation in Composite Solder

Sees, Jennifer A. (Jennifer Anne) 05 1900 (has links)
The Sn/Pb eutectic alloy system is the most widely used joining material in the electronics industry. In this application, the solder acts as both an electrical and mechanical connection within and among the different packaging levels in an electronic device. Recent advances in packaging technologies, however, driven by the desire for miniaturization and increased circuit speed, result in severe operating conditions for the solder connection. In an effort to improve its mechanical integrity, metallic or intermetallic particles have been added to eutectic Sn/Pb solder, and termed composite solders. It was the goal of this study to investigate the growth and morphology of the two intermetallic phases (Cu6Sn5 and Cu3Sn) that form between a Cu substrate and Sn/Pb solder under different aging and annealing conditions.
2

Microstructural, Mechanical and Oxidation Behavior of Ni-Al-Zr Intermetallic Eutectic Alloys

Gunjal, Vilas Vishnu January 2016 (has links) (PDF)
The excellent high temperature microstructure stability, high strength, and oxidation resistance of intermetallics has for long driven the development of intermetallic based alloys. More recent studies demonstrated attractive properties of eutectic intermetallic in the Ni-Al-Zr systems. This thesis deals with study of binary Ni3Al+Ni7Zr2, NiAl+Ni7Zr2 and Ni3Al+NiAl+Ni7Zr2 ternary intermetallic eutectic alloys in this system and includes the identification of compositions that would yield each eutectic structure and their microstructural characterization, mechanical and oxidation behavior. The thesis is divided into six chapters. Chapter 1 reviews the study on high temperature materials development and presents the objectives of work in the current thesis. Various experimental techniques used for alloy preparation (vacuum arc melting and vacuum suction casting), microstructural characterization (optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray Diffraction (XRD), electron probe micro analyzer (EPMA), differential scanning calorimetry (DSC)), compression tests, microhardness tests and thermo gravimetric analysis (TGA) are described in Chapter 2. The specific background of work related to each chapter together with experimental results and discussion are given in next three chapters. Chapter 3 reports the method of identification of the composition for each of the eutectic alloys referred to above. The identification of alloy compositions of binary eutectics Ni3Al+Ni7Zr2 (Ni-13.5Al-11Zr), NiAl+Ni7Zr2 (Ni-19Al-12Zr) and Ni3Al+NiAl+Ni7Zr2 ternary eutectic (Ni-18.4Al-11.6Zr) is carried out with the help of available liquidus projection of Ni-Al-Zr system, and the iterative melting of numerous compositions that were refined to define the critical compositions for each eutectic. The microstructural features of these alloys have been characterized using optical and electron microscopy. Phase identification is confirmed by X ray diffraction, EPMA and TEM. The microstructure of Ni3Al+Ni7Zr2 and Ni3Al+NiAl+Ni7Zr2 ternary eutectic alloy shows similar eutectic morphologies. The eutectic colony consists of lamellar plates at center and intermixed lamellar-rod irregular morphologies towards the boundaries of the colonies. However, the NiAl+Ni7Zr2 eutectic alloy shows a fine, lamellar plate morphology throughout the microstructure. The orientation relationship between eutectic phases is determined using TEM technique for each alloy composition. Onsets of melting and liquidus temperatures have been identified by Differential Scanning Calorimetry. Modified liquidus projections of Ni-Al-Zr system near the Ni3Al+NiAl+Ni7Zr2 ternary eutectic region have been derived from present experimental work. Chapter 4 focuses on understanding the mechanical behaviour of these individual eutectics at room temperature and high temperature. An attempt has been made to correlate the microstructure and mechanical properties of eutectics by measuring room temperature hardness, compressive yield strength at various temperatures, and examination of slip bands, crack initiation and fractography. It is observed that NiAl+Ni7Zr2 eutectic possesses the highest yield strength and hardness followed by ternary eutectic and then the Ni3Al+Ni7Zr2 eutectic. The yield strength of these eutectics decreases rapidly beyond 700oC and this decrease is accompanied by substantial increase in compressive ductility and steady state flow, with little work hardening. Chapter 5 explores the isothermal oxidation behavior at high temperatures of these eutectic alloys. Oxidation kinetics have been measured at various temperatures (900oC, 1000oC, 1050oC and 1100oC) are carried out using the thermo gravimetric analysis technique (TGA). The oxidation behavior has been characterized using TGA, X ray diffraction and EPMA. The Top surface of oxide layer shows compact, NiO layer with a fine grain size. The cross section of oxide samples shows five distinct microstructural and compositional layers at steady state. Attempt has been made to understand the oxidation mechanism, sequence of layer formation in correlation with microstructure and weight gains, rate constants and activation energy analysis. Finally Chapter 6 presents a summary of the current work and suggests for further work.
3

Korrelation mikrostruktureller und mechanischer Eigenschaften von Ti-Fe-Legierungen

Schlieter, Antje 30 July 2012 (has links) (PDF)
The effect of solidification conditions on microstructural and mechanical properties of eutectic TiFe alloy cast under different conditions was examined. Samples exhibit different ultrafine eutectic structures (β-Ti(Fe) solid solution + TiFe). Different cooling conditions lead to the evolution of ultrafine eutectic oval-shaped colonies or elongated lamellar colonies with preferred orientation. Isotropic as well as anisotropic mechanical properties were obtained. Alloys exhibit compressive strengths between 2200 and 2700 MPa and plastic strains between 7 and 19 pct. in compression.
4

Korrelation mikrostruktureller und mechanischer Eigenschaften von Ti-Fe-Legierungen

Schlieter, Antje 04 July 2012 (has links)
The effect of solidification conditions on microstructural and mechanical properties of eutectic TiFe alloy cast under different conditions was examined. Samples exhibit different ultrafine eutectic structures (β-Ti(Fe) solid solution + TiFe). Different cooling conditions lead to the evolution of ultrafine eutectic oval-shaped colonies or elongated lamellar colonies with preferred orientation. Isotropic as well as anisotropic mechanical properties were obtained. Alloys exhibit compressive strengths between 2200 and 2700 MPa and plastic strains between 7 and 19 pct. in compression.:Inhaltsverzeichnis 1 Einleitung 1 2 Grundlagen 9 2.1 Titan und Titan-Legierungen. . . . . . . . . . . . . . 9 2.2 Das binäre System Ti-Fe. . . . . . . . . . . . . .11 2.3 Phasendiagramm, Gleichgewichts-/ Nichtgleichgewichtsprozesse. . . . . . . . . . . . . .11 2.3.1 Kristallstrukturen der eutektischen Phasen . . . . . . . . . . . . . . 14 2.3.2 Klassifizierung von Phasengrenzflächen. . . . . . . . . . . . . .15 2.3.3 Eigenschaften intermetallischer Phasen mit B2- Struktur. . . . . . . . . . . . . . 17 2.4 Erstarrung von Schmelzen . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Das eutektische System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.1 Metastabile Legierungen . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.2 Keimbildung von eutektischen Systemen . . . . . . . . . . . . . . . 26 2.5.3 Klassifizierung eutektischer Gefüge. . . . . . . . . . . . . . . . . . 27 2.5.4 eutektische Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.5 Bestimmung der Erstarrungsgeschwindigkeit nach Jackson und Hunt. . . . . . . . . . . . . . 31 2.6 Einfluss des Gefüges auf die Verformungsmechanismen . . . . . . 32 2.7 Prozessrouten zur Herstellung nanostrukturierter/ultrafeinkörniger (ns/ufk) Materialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.8 Duktilität und Festigkeit ns/ufk Materialien (Stand der Forschung) . . . . 39 3 Werkstoffauswahl und Probenherstellung. . . . . . . . . . . . . . 46 3.1 Werkstoffauswahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Probenherstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Herstellung der Vorlegierung im Lichtbogenofen . . . . . . . . 48 3.2.2 Herstellung der Legierungen nach der Bridgeman-Technik . . 49 3.2.3 Herstellung der Ti-Fe- bzw. Ti-Fe-Sn-Legierungen in verschiedenen Rascherstarrungsanlagen . . . . . . . . . . . . . 50 3.2.3.1 Stabherstellung Kalttiegelanlage . . . . . . . . . . . . . . 52 3.2.3.2 Stabherstellung Kipptiegelanlage . . . . . . . . . . . . . . 52 3.2.3.3 Stabherstellung Differenzdruckgussanlage . . . . . . . 53 4 Charakterisierungsmethoden. . . . . . . . . . . . . . 55 4.1 Chemische Analytik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Nasschemische Analyse . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.2 Nichtmetallanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Röntgendiffraktometrie (XRD) . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Mikroskopische Untersuchungen . . . . . . . . . . . . . . . . . . . . . . 57 4.3.1 Lichtmikroskopie (LM) . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.2 Rasterelektronenmikroskopie (REM) . . . . . . . . . . . . . . . . 59 4.3.3 Transmissionenelektronenmikroskopie (TEM) . . . .. . . . . . 61 4.4 Mechanische Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.1 Härte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.2 Druckversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4.3 Zugversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4.4 In situ Druck- und in situ Zugversuch . . . . . . . . . . . . . 64 4.5 Ultraschallmessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.6 Dilatometermessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 Einphasige betafi-Ti(Fe)- und TiFe IP-Legierungen. . . . . . . . . . . . . 68 5.1 Die fibeta-Ti(Fe)-Legierung . . .. . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Die intermetallische Phase TiFe . . . . . . . . . . . . . . . . . . . . . . . . 82 6 Gerichtet erstarrte Ti70,5Fe29,5-Legierung . . . . . . . . . . . . . .92 7 Rasch erstarrte Ti70,5Fe29,5-Legierung . . . . . . . . . . . . . . 99 7.1 Gefüge der rasch erstarrten Ti70,5Fe29,5-Legierung . . . . . . . . 99 7.2 Mechanische Charakterisierung der rasch erstarrten Ti70,5Fe29,5- Legierung . ..120 7.2.1 Druckversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2.2 Bestimmung der elastischen Konstanten . . . . . . . . . . . . 128 7.2.3 Zugversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2.4 In situ Druck- und in situ Zugversuche . . . . . . . . . . . . . 134 8 Rasch erstarrte Ti-Fe-Sn-Legierung . . . . . . . . . . . . . .138 8.1 Gefüge der Ti-Fe-Sn-Legierung . . . . . . . . . . . . . . . . . 139 8.2 Mechanische Eigenschaften der Ti-Fe-Sn-Legierung . . . . . . . . . 143 9 Zusammenfassung und Ausblick . . . . . . . . . . . . . . 146 Abbildungsverzeichnis I Tabellenverzeichnis VIII Literaturverzeichnis X Anhänge XXII A Das Ti-Fe-Phasendiagramm nach [1] XXII B Dilatometermessung XXIII C Die elastischen Konstanten der Ti-Fe- und Ti-Fe-Sn-Legierung XXIV D XRD-Messungen (Transmission) XXV E Bestimmung des Fe-Gehaltes in Abhängigkeit von der Gitterkonstanten a0 XXVIII Eidesstattliche Erklärung XXIX Danksagung
5

Effect of Heat Treatment and Modification on Flow and Fracture Behaviour of a Newly Developed Al-Si Based Cast Alloy

Joseph, Sudha January 2013 (has links) (PDF)
The compression behavior of a newly developed near eutectic Al-Si based cast alloy with three different microstructures has been investigated in the present work. Microstructures with modified and unmodified Si particles and matrix with different tempers are investigated. The main objective of this work is to understand the effect of heat treatment and modification on the fracture behavior of the alloy under compression. This alloy is subjected to compressive loading at different strain rates and temperatures during the operation of the engines. Hence, the effect of strain rates and temperatures is also considered. The compression tests are carried out at different strain rates from quasi-static to dynamic viz., 3*10-4 to 102/s and three different temperatures RT, 100°C and 200°C. Microstructure of the alloys studied predominantly consists of eutectic colonies of α-Al and Si with a few interspersed α-Al dendrites. Modified alloy has more globular Si particles than unmodified alloy. Heat treated alloys are found to have hardening precipitates S’ & Al7Cu4Ni and 3-7 atomic layer thick zones, which may be precursors to S’ phase. A variety of large intermetallics, viz., plate like particles Al4.5FeSi, Chinese script like particles Al19Fe4MnSi2 and bulky phase Al3NiCu are also observed in the alloys. Mechanical behavior of the alloys is found to be different for different microstructures. Modification improves strength and ductility. Heat treatment improves strength of the alloy at the expense of ductility. A transition in mechanical behavior is observed after a particular strain rate for all the alloys studied. This transition strain rate is dependent on heat treatment, Si particle size and temperature. This transition can be explained on the basis of dislocation-precipitate and dislocation-Si particle interactions. Work hardening behavior of the alloys depends on the matrix microstructure in the unmodified alloys, and both matrix and particles play a role in the modified alloy. A statistically robust quantitative micro structural analysis has been carried out after compressing the samples at various strain rates and temperatures. The unique contribution of this work is the understanding of combined effect of strain rate and temperature on Si particle fracture characteristics in the alloy with different microstructures. From the fracture characteristics of Si particles, it is concluded that both dislocation pile-up mechanism and fibre loading are responsible for particle fracture in the modified alloy, whereas the fibre loading mechanism alone is sufficient to explain the particle fracture characteristics in the unmodified alloy. Si particles in the modified condition are found to cleave along the lowest surface energy planes {112} & {110} and the particles with orientations {112} & {111} are more prone to fracture. In addition to Si particle fracture, elongated Fe rich intermetallic particles are also seen to show peculiar fracture behavior. The Al4.5FeSi intermetallics with (100) as the plane of the plate cleave along (100) planes. This is a novel finding in this work and could have immense implications on the role of Fe impurities in the fracture behavior of these alloys. Moreover, since these cleavage fractures are seen to be more than 200 microns in size (which implies that the real penny shaped crack would be even larger) their role cannot be assumed to be negligible, as was previously thought. The load sharing between the Al matrix and eutectic Si particles are simulated by microstructure based finite element modeling. The program OOF (Object-Oriented Finite element analysis) is used to generate the finite element meshes for real microstructures with different Si morphology. The experimentally obtained stress – strain properties of the alloy is given as an input to describe the plastic behavior of the Al matrix, in the finite element simulation. This analysis helps to understand the effect of particle size, shape, orientation & clustering and matrix temper on the stress transferred to the Si particles. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to validate the stress states in Si particles with {111} orientations. The stress at fracture of Si particles is also estimated from Raman technique. Even though the alloys with different microstructures show different mechanical behavior, the sequence of fracture mechanisms is found to be same for all the alloys. The failure occurs in three stages: cracking of Si particles at low strains, micro-crack formation along the fractured particles, micro-crack coalescence and propagation leading to final failure. Thus, the proposed analysis links various deformation mechanisms ranging from nano precipitate-dislocation interactions to micro short-fiber theory of load sharing by eutectic silicon along with coupled effect of strain rate and temperature. In addition, negative strain rate sensitivity is also observed in the lower strain rate regimes (3*10-4, 10-3& 102/s) at RT and 100°C for all the three alloys, and serrated flow is also observed in the same strain rate and temperature regimes. Some of the features of serrated flow can be explained by the dynamic strain aging model and some other features by precipitate shearing.

Page generated in 0.0756 seconds