Spelling suggestions: "subject:"ultrafeinkörnige"" "subject:"ultrafeinkörnigen""
1 |
Korrelation mikrostruktureller und mechanischer Eigenschaften von Ti-Fe-LegierungenSchlieter, Antje 30 July 2012 (has links) (PDF)
The effect of solidification conditions on microstructural and mechanical properties of eutectic TiFe alloy cast under different conditions was examined. Samples exhibit different ultrafine eutectic structures (β-Ti(Fe) solid solution + TiFe). Different cooling conditions lead to the evolution of ultrafine eutectic oval-shaped colonies or elongated lamellar colonies with preferred orientation. Isotropic as well as anisotropic mechanical properties were obtained. Alloys exhibit compressive strengths between 2200 and 2700 MPa and plastic strains between 7 and 19 pct. in compression.
|
2 |
Korrelation mikrostruktureller und mechanischer Eigenschaften von Ti-Fe-LegierungenSchlieter, Antje 04 July 2012 (has links)
The effect of solidification conditions on microstructural and mechanical properties of eutectic TiFe alloy cast under different conditions was examined. Samples exhibit different ultrafine eutectic structures (β-Ti(Fe) solid solution + TiFe). Different cooling conditions lead to the evolution of ultrafine eutectic oval-shaped colonies or elongated lamellar colonies with preferred orientation. Isotropic as well as anisotropic mechanical properties were obtained. Alloys exhibit compressive strengths between 2200 and 2700 MPa and plastic strains between 7 and 19 pct. in compression.:Inhaltsverzeichnis
1 Einleitung 1
2 Grundlagen 9
2.1 Titan und Titan-Legierungen. . . . . . . . . . . . . . 9
2.2 Das binäre System Ti-Fe. . . . . . . . . . . . . .11
2.3 Phasendiagramm, Gleichgewichts-/
Nichtgleichgewichtsprozesse. . . . . . . . . . . . . .11
2.3.1 Kristallstrukturen der eutektischen Phasen . . . . . . . . . . . . . . 14
2.3.2 Klassifizierung von Phasengrenzflächen. . . . . . . . . . . . . .15
2.3.3 Eigenschaften intermetallischer Phasen mit B2-
Struktur. . . . . . . . . . . . . . 17
2.4 Erstarrung von Schmelzen . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Das eutektische System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Metastabile Legierungen . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Keimbildung von eutektischen Systemen . . . . . . . . . . . . . . . 26
2.5.3 Klassifizierung eutektischer Gefüge. . . . . . . . . . . . . . . . . . 27
2.5.4 eutektische Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.5 Bestimmung der Erstarrungsgeschwindigkeit nach Jackson und
Hunt. . . . . . . . . . . . . . 31
2.6 Einfluss des Gefüges auf die Verformungsmechanismen . . . . . . 32
2.7 Prozessrouten zur Herstellung nanostrukturierter/ultrafeinkörniger
(ns/ufk) Materialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Duktilität und Festigkeit ns/ufk Materialien (Stand der
Forschung) . . . . 39
3 Werkstoffauswahl und Probenherstellung. . . . . . . . . . . . . . 46
3.1 Werkstoffauswahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Probenherstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 Herstellung der Vorlegierung im Lichtbogenofen . . . . . . . . 48
3.2.2 Herstellung der Legierungen nach der Bridgeman-Technik . . 49
3.2.3 Herstellung der Ti-Fe- bzw. Ti-Fe-Sn-Legierungen in
verschiedenen Rascherstarrungsanlagen . . . . . . . . . . . . . 50
3.2.3.1 Stabherstellung Kalttiegelanlage . . . . . . . . . . . . . . 52
3.2.3.2 Stabherstellung Kipptiegelanlage . . . . . . . . . . . . . . 52
3.2.3.3 Stabherstellung Differenzdruckgussanlage . . . . . . . 53
4 Charakterisierungsmethoden. . . . . . . . . . . . . . 55
4.1 Chemische Analytik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.1 Nasschemische Analyse . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Nichtmetallanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Röntgendiffraktometrie (XRD) . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Mikroskopische Untersuchungen . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Lichtmikroskopie (LM) . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Rasterelektronenmikroskopie (REM) . . . . . . . . . . . . . . . . 59
4.3.3 Transmissionenelektronenmikroskopie (TEM) . . . .. . . . . . 61
4.4 Mechanische Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Härte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Druckversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Zugversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.4 In situ Druck- und in situ Zugversuch . . . . . . . . . . . . . 64
4.5 Ultraschallmessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Dilatometermessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5 Einphasige betafi-Ti(Fe)- und TiFe IP-Legierungen. . . . . . . . . . . . . 68
5.1 Die fibeta-Ti(Fe)-Legierung . . .. . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Die intermetallische Phase TiFe . . . . . . . . . . . . . . . . . . . . . . . . 82
6 Gerichtet erstarrte Ti70,5Fe29,5-Legierung . . . . . . . . . . . . . .92
7 Rasch erstarrte Ti70,5Fe29,5-Legierung . . . . . . . . . . . . . . 99
7.1 Gefüge der rasch erstarrten Ti70,5Fe29,5-Legierung . . . . . . . . 99
7.2 Mechanische Charakterisierung der rasch erstarrten Ti70,5Fe29,5-
Legierung . ..120
7.2.1 Druckversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.2 Bestimmung der elastischen Konstanten . . . . . . . . . . . . 128
7.2.3 Zugversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2.4 In situ Druck- und in situ Zugversuche . . . . . . . . . . . . . 134
8 Rasch erstarrte Ti-Fe-Sn-Legierung . . . . . . . . . . . . . .138
8.1 Gefüge der Ti-Fe-Sn-Legierung . . . . . . . . . . . . . . . . . 139
8.2 Mechanische Eigenschaften der Ti-Fe-Sn-Legierung . . . . . . . . . 143
9 Zusammenfassung und Ausblick . . . . . . . . . . . . . . 146
Abbildungsverzeichnis I
Tabellenverzeichnis VIII
Literaturverzeichnis X
Anhänge XXII
A Das Ti-Fe-Phasendiagramm nach [1] XXII
B Dilatometermessung XXIII
C Die elastischen Konstanten der Ti-Fe- und Ti-Fe-Sn-Legierung XXIV
D XRD-Messungen (Transmission) XXV
E Bestimmung des Fe-Gehaltes in Abhängigkeit von der Gitterkonstanten
a0 XXVIII
Eidesstattliche Erklärung XXIX
Danksagung
|
3 |
Bestimmung lokaler Textur- und Spannungsverteilungen an submikro-/nanokristallinen mehrphasigen Gradientenmaterialien mittels zweidimensionaler Röntgenmikrobeugung sowie anhand analytischer und numerischer ModellierungsansätzeEschke, Andy 01 April 2015 (has links) (PDF)
Fortschrittliche ingenieurtechnische Anwendungen stellen hohe Ansprüche an neuartige Materialien sowohl hinsichtlich e.g. mechanischer Eigenschaften wie Festigkeit und Duktilität als auch hinsichtlich einer möglichst vielfältigen Einsetzbarkeit (Maßschneiderung etc.). Zudem sind Ressourcenschonung und nachhaltige Produktion bei gleichzeitig hoher Performance zu realisieren. Entsprechend existiert grundlagenseitig Forschungsbedarf zu innovativen Materialien (e.g. Kompositwerkstoffe) und ihren Prozessierungen.
In der vorliegenden Dissertation werden submikro-/nanokristalline mehrphasige Gradientenmaterialien zum Einen mittels experimenteller Methoden wie der zweidimensionalen Röntgenmikrobeugung (in geeigneter Weiterentwicklung) sowie zum Anderen mittels analytischer und numerischer Modellrechnungen bezüglich spezieller Eigenschaften und deren Korrelation zum Herstellungsprozess (starke plastische Verformung durch akkumuliertes Rundkneten) untersucht. Insbesondere werden lokale Verteilungen kristallografischer Textur sowie mechanischer (Eigen-)Spannungen analysiert und in Hinblick auf materialrelevante Eigenschaften (e.g. mechanisch, mikrostrukturell) interpretiert und korreliert. Derartige Beziehungen sind hinsichtlich perspektivischer Applikationen, e.g. im Bereich hochfester Leichtbaulösungen, von technischer Relevanz.
|
4 |
Bestimmung lokaler Textur- und Spannungsverteilungen an submikro-/nanokristallinen mehrphasigen Gradientenmaterialien mittels zweidimensionaler Röntgenmikrobeugung sowie anhand analytischer und numerischer ModellierungsansätzeEschke, Andy 22 January 2015 (has links)
Fortschrittliche ingenieurtechnische Anwendungen stellen hohe Ansprüche an neuartige Materialien sowohl hinsichtlich e.g. mechanischer Eigenschaften wie Festigkeit und Duktilität als auch hinsichtlich einer möglichst vielfältigen Einsetzbarkeit (Maßschneiderung etc.). Zudem sind Ressourcenschonung und nachhaltige Produktion bei gleichzeitig hoher Performance zu realisieren. Entsprechend existiert grundlagenseitig Forschungsbedarf zu innovativen Materialien (e.g. Kompositwerkstoffe) und ihren Prozessierungen.
In der vorliegenden Dissertation werden submikro-/nanokristalline mehrphasige Gradientenmaterialien zum Einen mittels experimenteller Methoden wie der zweidimensionalen Röntgenmikrobeugung (in geeigneter Weiterentwicklung) sowie zum Anderen mittels analytischer und numerischer Modellrechnungen bezüglich spezieller Eigenschaften und deren Korrelation zum Herstellungsprozess (starke plastische Verformung durch akkumuliertes Rundkneten) untersucht. Insbesondere werden lokale Verteilungen kristallografischer Textur sowie mechanischer (Eigen-)Spannungen analysiert und in Hinblick auf materialrelevante Eigenschaften (e.g. mechanisch, mikrostrukturell) interpretiert und korreliert. Derartige Beziehungen sind hinsichtlich perspektivischer Applikationen, e.g. im Bereich hochfester Leichtbaulösungen, von technischer Relevanz.
|
Page generated in 0.0516 seconds