Spelling suggestions: "subject:"eutectic."" "subject:"eutectique.""
11 |
Estruturas das ligas euteticas Zn-MgZn-2, Al-UAl-4 e Al-ThAl-3AMBROZIO FILHO, FRANCISCO 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:29:34Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:27Z (GMT). No. of bitstreams: 1
01338.pdf: 15640302 bytes, checksum: 4fae24b5feb8211558ce2044fac55ec5 (MD5) / Tese (Doutoramento) / IEA/T / Escola Politecnica, Universidade de Sao Paulo - POLI/USP
|
12 |
Pharmaceutical Eutectics: Characterization and Evaluation of Tolbutamide and Haloperidol using Thermal Analytical and Complementary TechniquesGebremichael, Ermias 14 June 2010 (has links)
No description available.
|
13 |
Microstructural, Mechanical and Oxidation Behavior of Ni-Al-Zr Intermetallic Eutectic AlloysGunjal, Vilas Vishnu January 2016 (has links) (PDF)
The excellent high temperature microstructure stability, high strength, and oxidation resistance of intermetallics has for long driven the development of intermetallic based alloys. More recent studies demonstrated attractive properties of eutectic intermetallic in the Ni-Al-Zr systems. This thesis deals with study of binary Ni3Al+Ni7Zr2, NiAl+Ni7Zr2 and Ni3Al+NiAl+Ni7Zr2 ternary intermetallic eutectic alloys in this system and includes the identification of compositions that would yield each eutectic structure and their microstructural characterization, mechanical and oxidation behavior. The thesis is divided into six chapters. Chapter 1 reviews the study on high temperature materials development and presents the objectives of work in the current thesis. Various experimental techniques used for alloy preparation (vacuum arc melting and vacuum suction casting), microstructural characterization (optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray Diffraction (XRD), electron probe micro analyzer (EPMA), differential scanning calorimetry (DSC)), compression tests, microhardness tests and thermo gravimetric analysis (TGA) are described in Chapter 2. The specific background of work related to each chapter together with experimental results and discussion are given in next three chapters. Chapter 3 reports the method of identification of the composition for each of the eutectic alloys referred to above. The identification of alloy compositions of binary eutectics Ni3Al+Ni7Zr2 (Ni-13.5Al-11Zr), NiAl+Ni7Zr2 (Ni-19Al-12Zr) and Ni3Al+NiAl+Ni7Zr2 ternary eutectic (Ni-18.4Al-11.6Zr) is carried out with the help of available liquidus projection of Ni-Al-Zr system, and the iterative melting of numerous compositions that were refined to define the critical compositions for each eutectic. The microstructural features of these alloys have been characterized using optical and electron microscopy. Phase identification is confirmed by X ray diffraction, EPMA and TEM. The microstructure of Ni3Al+Ni7Zr2 and Ni3Al+NiAl+Ni7Zr2 ternary eutectic alloy shows similar eutectic morphologies. The eutectic colony consists of lamellar plates at center and intermixed lamellar-rod irregular morphologies towards the boundaries of the colonies. However, the NiAl+Ni7Zr2 eutectic alloy shows a fine, lamellar plate morphology throughout the microstructure. The orientation relationship between eutectic phases is determined using TEM technique for each alloy composition. Onsets of melting and liquidus temperatures have been identified by Differential Scanning Calorimetry. Modified liquidus projections of Ni-Al-Zr system near the Ni3Al+NiAl+Ni7Zr2 ternary eutectic region have been derived from present experimental work. Chapter 4 focuses on understanding the mechanical behaviour of these individual eutectics at room temperature and high temperature. An attempt has been made to correlate the microstructure and mechanical properties of eutectics by measuring room temperature hardness, compressive yield strength at various temperatures, and examination of slip bands, crack initiation and fractography. It is observed that NiAl+Ni7Zr2 eutectic possesses the highest yield strength and hardness followed by ternary eutectic and then the Ni3Al+Ni7Zr2 eutectic. The yield strength of these eutectics decreases rapidly beyond 700oC and this decrease is accompanied by substantial increase in compressive ductility and steady state flow, with little work hardening. Chapter 5 explores the isothermal oxidation behavior at high temperatures of these eutectic alloys. Oxidation kinetics have been measured at various temperatures (900oC, 1000oC, 1050oC and 1100oC) are carried out using the thermo gravimetric analysis technique (TGA). The oxidation behavior has been characterized using TGA, X ray diffraction and EPMA. The Top surface of oxide layer shows compact, NiO layer with a fine grain size. The cross section of oxide samples shows five distinct microstructural and compositional layers at steady state. Attempt has been made to understand the oxidation mechanism, sequence of layer formation in correlation with microstructure and weight gains, rate constants and activation energy analysis. Finally Chapter 6 presents a summary of the current work and suggests for further work.
|
14 |
Evaluation of Composite Alumina Nanoparticle and Nitrate Eutectic Materials for use in Concentrating Solar Power PlantsMalik, Darren R. 2010 May 1900 (has links)
The focus of this research was to create and characterize high temperature alumina and
nitrate salt eutectic nanofluids for use in thermal energy storage (TES) systems. The nitrate
eutectic was originally used in the TES system demonstrated as part of the Solar Two power
tower and is currently employed as the TES material at Andasol 1 in Spain. Concentrations of
alumina nanoparticles between 0.1% and 10% by weight were introduced into the base material
in an effort to create nanofluids which would exhibit improved specific heat capacity to reduce
the $/kWht thermal energy storage system costs.
The composite materials were created using an aqueous mixing method in which both
the nanoparticles and nitrate eutectic were placed into solution using acidic water. This solution
was then sonicated in an ultrasonic bath in an effort to reduce nanoparticle agglomeration and to
improve homogeneity. After boiling off the excess water, the nanoparticle-nitrate eutectic
composite was recovered for characterization. The thermal properties of both the composite and
base materials were characterized using the differential scanning calorimetry techniques outlined
in ASTM E 1269.
The created nanofluids were not stable and did not offer a cost-effective alternative to
the current nitrate eutectic TES material. Despite these setbacks, a positive correlation between
alumina concentration and nanofluid specific heat was demonstrated. Additionally, the specific heat capacities of the created nanofluids exceeded that predicted by the current theoretical
models. These findings suggest that further work in the field of high temperature nanofluids for
use in TES systems is warranted.
|
15 |
Ionothermal synthesis : a new synthesis methodology using ionic liquids and eutectic mixtures as both solvent and template in zeotype synthesisParnham, Emily Ruth January 2006 (has links)
The aim of this thesis was to research the new synthesis methodology of ionothermal synthesis, used for the synthesis of zeolite type materials, mainly aluminophosphates. An ionic liquid or eutectic mixture is to act as both the organic template and the solvent, hence eliminating the space filling effects in the reaction from the water. Initial reactions were carried out using the ionic liquid 1-ethyl-3-methylimidazolium bromide which acted as the solvent and template in the production of four three-dimensional structures and one layered structure. The addition of cobalt into the aluminophosphate framework was investigated and resulted in three different cobalt-aluminophosphates being synthesised, including one new zeolite framework. Experiments were carried out into the effect of altering the imidazolium cation alkyl chain. It appears likely that in the presence of fluoride, some of the imidazolium cations undergo a metathesis reaction forming 1,3-dimethylimidazolium which acts as a template in the formation of an aluminophosphate. Preliminary investigations have also been started into the effects of changing the ionic liquid anion from bromide to phosphorus hexafluoride and bis((trifluoromethyl)sulfonyl)amide. The use of these anions resulted in the production of several different one and two-dimensional structures. The use of eutectic mixtures as solvent and template was also investigated as a cheaper, more easily synthesised solvent than the ionic liquids. The results show a new methodology of eutectic mixtures acting as template delivery agents through the slow, in situ decomposition of the urea derivative of the eutectic mixture. This synthesis method resulted in the formation of nine one and two-dimensional aluminophosphates.
|
16 |
Solidification behaviour of titania slagsCoetzee, Colette 28 February 2007 (has links)
Please read the abstract in the 00front part of this document / Dissertation (MSc (Metallurgy))--University of Pretoria, 2007. / Materials Science and Metallurgical Engineering / unrestricted
|
17 |
Bioinspired Ion Pairs Transforming Poorly Water-soluble Compounds into Protic Ionic Liquids and Deep Eutectic Solvents / Bioinspirierte Ionenpaare Wandeln Schlecht-wasserlösliche Verbindungen in Protische Ionische Flüssigkeiten und Tiefe Eutektische LösungsmittelGüntzel, Paul Mathias January 2022 (has links) (PDF)
Microbial, mammalian and plant cells produce and contain secondary metabolites, which typically are soluble in water to prevent cell damage by crystallization. The formation of ion pairs, e.g. with carboxylic acids or mineral acids, is a natural blueprint to keep basic metabolites in solution. It was aimed at showing whether the mostly large carboxylates form soluble protic ionic liquids (PILs) with basic natural products resulting in enhanced aqueous solubility. Furthermore, their supramolecular pattern in aqueous solution was studied. Thereby, naturally occurring carboxylic acids were identified being appropriate counterions for natural basic compounds and facilitate the formation of PILs with their beneficial characteristics, like improved dissolution rate and enhanced apparent solubility. / Mikrobielle, Säugetier- und Pflanzenzellen produzieren und enthalten Sekundärmetaboliten, welche in Wasser gelöst vorliegen, um Zellschäden (z.B. durch Kristallisation) zu vermeiden. Die Bildung von Ionenpaaren, beispielsweise mit Carbonsäuren oder Mineralsäuren, ist eine natürliche Strategie, um basische Metaboliten in Lösung zu halten. Es sollte gezeigt werden, dass die vergleichsweise großen Carboxylate lösliche protische ionische Flüssigkeiten (PILs) mit basischen Naturstoffen bilden, was zu einer verbesserten Wasserlöslichkeit führt. Weiterhin wurde das supramolekulare Verhalten der PILs in wässriger Lösung untersucht. Dabei wurden natürlich vorkommende Carbonsäuren als geeignete Gegenionen für natürliche basische Verbindungen identifiziert. Die resultierenden PILs zeigten eine verbesserte Auflösungsrate und verbesserte scheinbare Löslichkeit.
|
18 |
Microstructural Development in Al-Si Powder During Rapid SolidificationAmber Lynn Genau January 2004 (has links)
19 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2447" Amber Lynn Genau. 12/19/2004. Report is also available in paper and microfiche from NTIS.
|
19 |
Paramètres contrôlant la précipitation et la dissolution de la phase CuAl2 du cuivre dans les alliages d'aluminium de type 319 et leurs influences sur la performance /Li, Zheng, January 2003 (has links)
Thèse (M.Eng.) -- Université du Québec à Chicoutimi, 2003. / Bibliogr.: f. [176]-185. Document électronique également accessible en format PDF. CaQCU
|
20 |
Effect of trace elements on the microstructure and porosity formation in 319 type Al-Si-Cu alloys /Elhadad, Shimaa, January 2003 (has links)
Thèse (M.Eng.) -- Université du Québec à Chicoutimi, 2003. / Bibliogr.: f. [141]-150. Document électronique également accessible en format PDF. CaQCU
|
Page generated in 0.0632 seconds