• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The relationship of zoospores of Aphanomyces euteiches to the host root

Cunningham, John Luverne, January 1961 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1961. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
2

Field and laboratory investigations with Aphanomyces euteiches

Temp, Marvin Wayne, January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1966. / Typescript. Vita. Description based on print version record. Includes bibliographical references.
3

Soil suppressiveness to Aphanomyces root rot of pea /

Persson, Lars, January 1998 (has links)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 6 uppsatser.
4

Chemical control of Aphanomyces root rot of peas and the relationship of Pythium spp. to the disease

Alconero Pivaral, Rodrigo Arturo, January 1967 (has links)
Thesis (Ph. D.)--University of Wisconsin, 1967. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
5

Aphanomyces root rot of garden pea

Sherwood, Robert Tinsley, January 1958 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1958. / Typescript. Abstracted in Dissertation abstracts, v. 18 (1958) no. 3, p. 751-752. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 116-119).
6

La Pourriture racinaire du pois : éléments de compréhension du processus infectieux d'A. euteiches et perspectives agronomiques / Root rot of the pea : understanding the infectious process of A. Euteiches and agronomic perspectives

Laloum, Yohana 15 December 2017 (has links)
Dans l’objectif de redynamiser la culture des protéagineux, il est primordial d’améliorer la gestion du risque lié à Aphanomyces euteiches, agent responsable de la pourriture racinaire du pois. Le manque de connaissances sur les mécanismes d’infection d’A. euteiches constitue un frein à l’élaboration de stratégies de contrôle durable. Dansl’optique d’étudier les premières étapes du processus infectieux d’A. euteiches, laconstruction d’une souche A. euteiche-GFP a été entreprise. Transfecter A. euteiches aura permis d’assurer (i) la production de protoplastes par digestion enzymatique du mycélium puis (ii) d’insérer le gène gfp par la méthode de transfection chimique PEG-CaCl2 et (iii) de constater l’insertion stable du gène gfp dont l’expression s'est avérée transitoire. En parallèle, dans l’objectif d’apporter des éléments de réponses quant aux rôles des exsudats racinaires et du Root Extracellular Trap (RET) dans les réactions de défense du pois, une étude comparée des interactions entre Pisum sativum (plante sensible) et Vicia Faba (plante tolérante) au pathogène A.euteiches a été réalisée durant les premières phases de l’infection. Alors que de nombreuses variations au niveau de la composition polysaccharidique du RET et des exsudats ont été observées chez le pois, la féverole a présenté des modifications marginales. Chez le pois, l’infection est intense et rapide alors qu’elle semble réduite chez la féverole. La féverole repousse les zoospores tandis que le pois infecté les attire davantage. La féverole semble pouvoir protéger le pois au travers de mécanismes de communication qu’il convient de caractériser. L’ensemble de ces résultats semblent prometteurs dans le développement de méthode de lutte contre la pourriture racinaire du pois. Enfin, l’étude des propriétés bio-physico-chimiques des sols susceptibles de conditionner l’apparition de la maladie ont permis de confirmer la corrélation positive entre la densité d’inoculum du pathogène et le potentiel infectieux (PI) dans des sols naturellement infestés : les sols possédant des teneurs élevées en sable ou en calcium s'avèrent défavorables au développement de la maladie. Cette étude a aussi permis de mettre en évidence une influence possible des communautés microbiennes des sols, susceptibles d’influencer le processus infectieux d’A.euteiches / Aphanomyces euteiches is a pathogenic oomycete considered to be the most damaging root disease of pea crops in the world and there is currently no registered pesticide for its control. Crop management is the most efficient tool to control root rot, and avoidance of infested soil seems to be the optimal solution. Mechanisms related to A. euteiches root colonization remain poorly understood. In order to better understand A.euteiches infectious cycle, a polyethylene glycol (PEG) – calcium chloride (CaCl2) transformation protocol has been perfected in order to stably express the reporter gene GFP. The data show for the first a transient expression of green fluorescent protein (GFP) which can be observed in A.euteiches mycelium, a Saprolegnia oomycete. Vector pGFPN, containing the ham34 promoter and terminator of the Peronospora oomycete Bremia Lactucae, was introduced in A.euteiches protoplasts. Transient expression of GFP could be observed in A. euteiches mycelium by confocal microscopy. qPCR analyses confirmed the actual gfp gene insertion in its genome. Meanwhile, the influence of both pea and faba bean root extracellular trap (RET) and root exudates has been explored for A. euteiches zoospores by chemotaxis assays, microscopic observations and oomycete DNA quantification. Reciprocally pea and faba bean roots responses to A. euteiches infection have been studied at early stage of infection by biochemical analysis of cell wall polymer content in the RET and root exudates. Whereas infected pea root exudates stimulated A.euteiches zoospores attraction, faba bean exudates had a repellent effect on zoospores. In response to infection, arabinogalactan protein content of root pea exudates was altered. Interestingly, A.euteiches colonization was less intense on faba bean root surface and protect pea root at early stage of infection. Finally, the correlation between inoculum quantity in infested and the inoculum potential (IP) in field has been confirmed by qPCR. Analyses of the influence of abiotic soil parameters on the disease showed that a high calcium concentration or sand content negatively impact the IP. Furthermore, microbial communities proved to play a role in the expression of the disease in some soils. Metagenomics could be applied in order to provide new directions in managing this disease.
7

Effet de la nutrition azotée sur la résistance de la légumineuse Medicago truncatula à Aphanomyces euteiches / Effect of nitrogen nutrition on Medicago truncatula resistance against Aphanomyces euteiches

Thalineau, Elise 09 December 2016 (has links)
L’azote (N) est un facteur majeur limitant la croissance des plantes. Sa disponibilité peut également avoir un impact sur la résistance des plantes aux pathogènes en régulant leur immunité. Afin de mieux comprendre les liens entre la nutrition azotée et les défenses de la plante, nous avons analysé l’impact de la disponibilité en N sur la résistance de Medicago truncatula à un pathogène racinaire, Aphanomyces euteiches, en prenant en compte la variabilité génétique de la plante. Cet oomycète est considéré comme un des facteurs limitant le plus la production des légumineuses. Deux conditions de nutrition azotée, non limitante ou carencée en N, et dix génotypes de M. truncatula ont été testés in vitro. Les résultats ont montré que la résistance est modulée par les conditions nutritionnelles, dépendament du génotype. Les analyses d’expression de gènes impliqués dans le métabolisme azoté et dans les réponses de défense ainsi que la quantification des teneurs en acides aminés et des composés métaboliques secondaires ont montré des réponses différentes selon les génotypes et la condition nutritive. Elles ont souligné en particulier le rôle potentiellement important de la glutamine dans ce pathosystème. De plus, nous avons mis en évidence l’importance de l’homéostasie du monoxyde d’azote (NO) dans la résistance de M. truncatula à A. euteiches et que la disponibilité en azote impactait l’homéostasie du NO en affectant les niveaux de S-nitrosothiols et l’activité de la S-nitrosoglutathion réductase dans les racines. Ces résultats soulignent l’importance du métabolisme azoté et de son interaction avec le génotype de la plante dans les réactions de défense chez M. truncatula. / Nitrogen (N) is a major limiting factor for plant growth. N availability can also impact plant resistance to pathogens by regulating plant immunity. To better understand the links between N nutrition and plant defense, we analyzed the impact of N availability of plant on Medicago truncatula resistance to the root pathogen, Aphanomyces euteiches, taking into account plant genetic variability. This oomycete is considered as the most limiting factor for legume production. Two conditions of N nutrition, non-limiting or deprived in N, and ten plant genotypes were tested in vitro. The results showed that the resistance is modulated by nutritional conditions, depending on plant genotype. Analysis of the expression of genes involved in N metabolism and defense and quantification of different amino-acids contents and secondary metabolic compounds showed different responses of the genotypes and highlighted a potential role of glutamine in this pathosystem. Furthermore, our work underlined the importance of nitric oxide (NO) homeostasis for M. truncatula resistance to A. euteiches and that N availability impacts NO homeostasis by affecting S-nitrosothiol levels and S-nitrosoglutathione reductase activity in roots. These studies highlight, therefore, the importance of N metabolism and its interaction with plant genotype in defense responses in M. truncatula.
8

Soil-borne pathogens in intensive legume cropping - Aphanomyces spp. and root rots /

Levenfors, Jens, January 2003 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2003. / Härtill 4 uppsatser.
9

Root rot of pea caused by Aphanomyces euteiches : calcium-dependent soil suppressiveness, molecular detection and population structure /

Heyman, Fredrik, January 2008 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2008. / Härtill 4 uppsatser.
10

Mapping QTL for root rot resistance, root traits, and morphological trait in a common bean recombinant inbred population

Hagerty, Christina H. 13 March 2013 (has links)
Root rot diseases of bean (Phaseolus vulgaris L.) are a problem wherever they are grown, and are a major constraint to dry edible and snap bean production. Root rot is a primary yield limitation of snap bean production in the US, especially within the top three snap bean producing states of Wisconsin, Oregon and New York. Bean root rot pathogens will be present by the end of the first season even when starting with clean ground. The decline in yield can be relatively slow, so growers might not notice or appreciate the hidden yield cost associated with root rot disease. Traditional methods for disease control such as fungicides, crop rotations, cover crops, seedbed preparations have been proven ineffective (either physically ineffective or economically unviable) against root rot. Therefore, genetic resistance is needed. In order to address the need for genetic resistance to root rot in snap beans, the highly root rot resistant line RR6950, a small seeded black indeterminate type IIIA accession of unknown origin, was crossed with OSU5446, a highly root rot susceptible determinate type I blue lake four-sieve breeding line to produce the RR138 recombinant inbred mapping population. In this study we evaluated the RR138 RI population in the F₆ generation for resistance to Fusarium solani root rot in Oregon and Aphanomyces euteiches root rot in Wisconsin. We also evaluated this population for morphological traits and root structural traits including pod height, pod width, pod length, pod wall thickness, strings, seed color, flower color, tap and basal root diameter, and root angle measurements. The RR138 population was also genotyped on the 10K BeanCAP Illumina Beadchip. The Single Nucleotide Polymorphism (SNP) data was used to assemble a high-density linkage map and Quantitative Trait Loci (QTL) for phenotypic data were evaluated. The linkage map produced from this study contained 1,689 SNPs across 1,196cM. The map was populated with 1 SNP for every 1.4cM, spanning across 11 linkage groups. Three QTL associated with A. euteiches root rot resistance were consistently expressed in 2011 and 2012 trials. A. euteiches QTL were found on Pv02, Pv04, and Pv06 and accounted for 7-17% of total genetic variation. Two QTL associated with F. solani were found in 2011 trial on Pv03 and Pv07, account for 9 and 22% of total genetic variation, respectively. We also found several QTL for morphological traits and root structural traits including QTL for pod fiber and pod height on Pv04, pod length on Pv01, strings on Pv01, taproot diameter on Pv05, and shallow basal root angle on Pv05, accounting for 21, 26, 12, 20, 11, and 19% of total genetic variation, respectively. QTL discovered from Oregon data for F. solani resistance did not cluster with QTL for A. euteiches root rot resistance. "SNP0928_7", was highly associated with F. solani resistance on Pv07 and "SNP0508_2", was highly associated with A. euteiches on Pv02. QTL and markers associated with QTL from this study will be of value to snap bean breeders developing root rot resistant lines with processing traits, and provide more information about targeting the mechanism of resistance. / Graduation date: 2013

Page generated in 0.0532 seconds