181 |
Fluxes of Energy and Water Vapour from Grazed Pasture on a Mineral Soil in the WaikatoKuske, Tehani Janelle January 2009 (has links)
The eddy covariance (EC) technique was used to measure half hourly fluxes of energy and evaporation from 15 December 2007 to 30 November 2008 at the Scott Research Farm, located 7 km east of Hamilton. Many other supporting measurements of climate and soil variables were also made. The research addressed three objectives: 1. To examine the accuracy of the eddy covariance measurement technique. 2. Understand the surface partitioning of energy and water vapour on a diurnal to annual timescale. 3. Compare measurements of evaporation to methods of estimation. Average energy balance closure at Scott Farm was deficient by 24%, comparable to published studies of up to 30%. Three lysimeter studies were carried out to help verify eddy covariance data. These resulted in the conclusions that; 1) lysimeter pots needed to be deeper to allow for vegetation rooting depths to be encompassed adequately; 2) forcing energy balance closure was not supported by two of the studies (summer and winter); 3) latent heat flux (λE) gap filling of night time EC data during winter over estimated values by about 10 W m-2; and 4) the spring lysimeter study verified eddy covariance measurements including the closure forcing method. Some uncertainty still exists as to the accuracy of both lysimeter and EC methods of evaporation measurement because both methods still have potential biases, however for the purpose of this study, it would appear data are sufficiently accurate to have confidence in results. Energy and water vapour fluxes varied on both a diurnal and seasonal timescale. Diurnally, fluxes were small or negative at night and were highest during the day, usually at solar noon. Seasonally, spring and summer had the highest energy and evaporation fluxes and winter rates were small but tended to exceed available energy supply. Evaporation was constrained by soil moisture availability during summer and by energy availability during winter. Estimated annual evaporation at Scott Farm was 755 mm, 72% of precipitation. Two evaporation models were compared to eddy covariance evaporation (EEC) measurements; the FAO56 Penman-Monteith model (Eo) and the Priestley-Taylor model (EPT). Both models over estimated evaporation during dry conditions and slightly under estimated during winter. The α coefficient that is applied to EPT was not constant and a seasonally adjusted value would be most appropriate. A crop coefficient of 1.13 is needed for Eo measurements during moist conditions. Eo began over estimating evaporation when soil moisture contents dropped below ~44%. A water stress adjustment was applied to both models which improved evaporation estimates, however early onset of drying was not able to be adjusted for. The adjusted Eo model is the most accurate overall, when compared to EEC.
|
182 |
Synoptic investigations of the summer climate and lake evaporation in Québec-LabradorPetzold, Donald Emil, 1949- January 1980 (has links)
A refined correlation method of synoptic pattern classification defines 32 unique types which control the summer climate of Quebec-Labrador. The synoptic catalogue is dominated by Hudson Bay cyclones on 38% of early summer days and by northern cyclones on 56% of fall days. August marks the seasonal progression from summer to fall with almost complete type transience. / Each type evokes a distinct response in surface climate and energy balance components. Representative type temperature deviations allow the reconstruction of daily and monthly temperature records. Radiative characteristics are defined for each synoptic pattern, yet there is little variation in cloud response to the type catalogue. Precipitation can be expected with any type occurrence and anticyclonic domination contributes significantly to summer precipitation. / The equilibrium evaporation model is extended to sub-arctic environments by using a Priestley-Taylor constant of (alpha)(,1) = 1.27. Seasonal variations in stored lake energy require synoptic evaporation estimates to be further categorized into three periods.
|
183 |
Sensible heat flux and evaporation for sparse vegetation using temperature-variance and a dual-source model.Abraha, Michael Ghebrekristos. January 2010 (has links)
The high population growth rate and rapid urbanization that the world is experiencing today has aggravated the competition for the already scarce resource ¡V water ¡V between the agricultural sector and the other economic sectors. Moreover, within the agricultural sector, water is increasingly being used for commercial plantations as opposed to growing food crops, threatening food security. Therefore, it is very important that this scarce resource is managed in an efficient and sustainable manner, for now and future use. This requires understanding the process of evaporation for accurate determination of water-use from agricultural lands. In the past, direct measurements of evaporation have proven difficult because of the cost and complexity of the available equipments, and level of expertise involved. This justifies a quest for relatively simple, accurate and inexpensive methods of determining evaporation for routine field applications. Estimation of sensible heat flux (H) from high frequency air temperature measurements and then calculating latent energy flux (ƒÜE) and hence evaporation as a residual of the shortened surface energy balance equation, assuming that closure is met, is appealing in this sense. Concurrent net irradiance (Rn) and soil heat flux (G) measurements can be conducted with relative ease for use in the energy balance equation. Alternately, evaporation can also be mathematically modelled, using single- or multi-layer models depending on vegetation cover, from less expensive routine meteorological observations. Therefore, the ultimate objective of this study is to estimate and model H and ƒÜE, and thereby evaporation, accurately over sparsely vegetated agricultural lands at low cost and effort. Temperature-variance (TV) and surface renewal (SR) methods, which use high-frequency (typically 2 to 10 Hz) air temperature measurements, are employed for estimation of H. The TV method is based on the Monin and Obukhov Similarity Theory (MOST) and uses statistical measures of the high frequency air temperature to estimate H, including adjustments for stability. The SR method is based on the principle that an air parcel near the surface is renewed by an air parcel from above and, to determine H, it uses higher order air temperature differences between two consecutive sample measurements lagged by a certain time interval. Single- and double-layer models that are based on energy and resistance combination theory were also used to estimate evaporation and H from sparse vegetation. Single- and double-layer models that were extended to include inputs of radiometric temperature in order to estimate H were also used. The transmission of solar irradiance to the soil beneath in sparse canopies is variable and depends on the vegetation density, cover and apparent position of the sun. A three-dimensional radiation interception model was developed to estimate this transmission of solar irradiance and was used as a sub-module in the double-layer models. Estimations of H from the TV (HTV), SR (HSR) and double-layer models were compared against H obtained from eddy covariance (HEC), and the modelled ƒÜE (single- and double-layer) were compared with that obtained from the shortened energy balance involving HEC. Besides, long-term ƒÜE calculated from the shortened energy balance using HTV and HSR were compared with those calculated using HEC. Unshielded and naturally-ventilated fine-wire chromel-constantan thermocouples (TCs), 75 ƒÝm in diameter, at different heights above the ground over sparse Jatropha curcas trees, mixed grassland community and bare fallow land were used to measure air temperature. A three-dimensional sonic anemometer mounted at a certain height above the ground surface was also used to measure virtual temperature and wind speed at all three sites. All measurements were done differentially at 10-Hz frequency. Additional measurements of Rn, G and soil water content (upper 60 mm) were also made. The Jatropha trees were planted in a 3-m plant and inter-row spacing in a 50 m ¡Ñ 60 m plot with the surrounding plots planted to a mixture of Jatropha trees and Kikuyu grass. Average tree height and leaf area index measurements were taken on monthly and bimonthly basis respectively. An automatic weather station about 10 m away from the edge of the Jatropha plot was also used to obtain solar irradiance, air temperature and relative humidity, wind speed and direction and precipitation data. Soil water content was measured to a depth of 1000 mm from the surface at 200 mm intervals. Soil and foliage surface temperatures were measured using two nadir-looking infrared thermometers with one mounted directly above bare soil and the other above the trees. The three-dimensional solar irradiance interception model was validated using measurements conducted on different trees and planting patterns. Solar irradiance above and below tree canopies was measured using LI-200 pyranometer and tube solarimeters respectively. Leaf area density (LAD) was estimated from LAI, canopy shape and volume measurements. It was also determined by scanning leaves using either destructive sampling or tracing method. The performance of the TV method over sparse vegetation of J. curcas, mixed grassland community and fallow land was evaluated against HEC. Atmospheric stability conditions were identified using (i) sensor height (z) and Obukhov length (L) obtained from EC and (ii) air temperature difference between two thermocouple measurement heights. The HTV estimations, adjusted and not adjusted for skewness (actual and estimated) of air temperature (sk), for unstable conditions only and for all stability conditions were used. An improved agreement in terms of slope, coefficient of determination (r2) and root mean square error (RMSE), almost over all surfaces, was obtained when the temperature difference rather than the z/L means of identifying stability conditions was used. The agreement between the HTV and HEC was improved for estimations adjusted for actual sk than not adjusted for sk. Improved agreement was also noted when HTV was adjusted using estimated sk compared to not adjusting for sk over J. curcas. The TV method could be used to estimate H for surfaces with varying homogeneity with reasonable accuracy. Long-term water-use of a fetch-limited sparse vegetation of J. curcas was determined as a residual of the shortened surface energy balance involving HTV and HSR and compared with those estimated using HEC. Concurrent measurements of Rn and G were also performed. The long-term water-use of J. curcas trees calculated from the shortened surface energy balance involving HTV and HSR agreed very well when compared with those obtained from HEC. The seasonal HTV and HSR also agreed very well when compared with HEC. Changes in structure of the canopy and environmental conditions appeared to influence partitioning of the available energy into H and ƒÜE. The seasonal total evaporation for the EC, TV and SR methods amounted to 626, 640 and 674 mm respectively with a total rainfall of 690 mm. Footprint analysis also revealed that greater than 80% of the measured flux during the day originates from within the surface of interest. The TV and SR methods, therefore, offer a relatively low-cost means for long-term estimation of H, and ƒÜE, hence the total evaporation, using the shortened surface energy balance along with measurements of Rn and G. Evaporation and biomass production estimations from tree crops requires accurate representation of solar irradiance transmission through the canopy. A relatively simple three-dimensional, hourly time-step tree-canopy radiation interception model was developed and validated using measurements conducted on isolated trees, hedgerows and tree canopies arranged in tramline mode. Measurements were obtained using tube solarimeters placed 0.5 m from each other starting from the base of a tree trunk in four directions, along and perpendicular to the row up to mid-way between trees and rows. Model-simulations of hourly radiant transmittance were in good agreement with measurements with an overall r2 of 0.91; Willmott.s index of agreement of 0.96; and general absolute standard deviation of 17.66%. Agreement between model-estimations and measurements, however, was influenced by distance and direction of the node from the tree trunk, sky conditions, symmetry of the canopy, and uniformity of the stand and leaf distribution of the canopy. The model could be useful in planning and management applications for a wide range of tree crops. Penman-Monteith (PM) equation and the Shuttleworth and Wallace (SW) model, representing single- and dual-source models respectively, were used to determine the total evaporation over a sparse vegetation of J. curcas from routine automatic weather station observations, resistance parameters and vegetation indices. The three-dimensional solar irradiance interception model was used as a sub-module in the SW model. The total evaporation from the sparse vegetation was also determined as a residual of the shortened surface energy balance using measurements of Rn, G and HEC. The PM equation failed to reproduce the .measured. daily total evaporation during periods of low LAI, with improved agreement with increased LAI. The SW model, however, produced total evaporation estimates that agreed very well with the .measured. with a slope of 0.96, r2 of 0.91 and RMSE of 0.45 mm for a LAI ranging from 0 (no leaves) to 1.83 m2 m-2. The SW model also estimated soil evaporation and plant transpiration separately, and about 66 % of the cumulative evaporation was attributed to soil evaporation. These findings suggest that the PM equation should be replaced by the SW model for surfaces that assume a range of LAI values during the growing season. The H was estimated using (i) SW model that was further developed to include surface radiometric temperature measurements; (ii) one-layer model, but linked with a two-layer model for estimation of excess resistance, that uses surface radiometric temperature; and (iii) the SW model (unmodified). The agreement between modelled and measured H, using 10-min data, was in general reasonably good with RMSE (W m-2) of 45.11, 43.77 and 39.86 for the three models respectively. The comparative results that were achieved from (iii) were not translated into the daily data as all models appeared to have a tendency to underestimate H. The resulting RMSEs for the daily H data for the three models were (MJ m-2) 1.16, 1.17 and 1.18 respectively. It appears that similar or better agreement between measured and estimated H can be forged without the need for surface radiometric temperature measurements. The study showed, in general, that high frequency air temperature measurements can be used to estimate H with reasonable accuracy using the simple and relatively low-cost TV and SR methods. Moreover, these methods can be used to calculate ƒÜE, hence ET, as a residual of the shortened surface energy balance equation along with measurements of Rn and G assuming that energy balance closure is met. The simple and low-cost nature of these methods makes replication of measurements easier and their robust nature allows long-term measurements of energy fluxes. The study also showed that H and ƒÜE can be modeled using energy and resistance combination equations with reasonable accuracy. It also reiterated that the SW-type models, which treat the plant canopy and soil components separately, are more appropriate for estimation of H and ƒÜE over sparse vegetation as opposed to the PM-type models. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
|
184 |
Sensible heat flux under unstable conditions for sugarcane using temperature variance and surface renewal.Nile, Eltayeb Sulieman. January 2010 (has links)
Increased pressure on the available limited water resources for agricultural production has a significant impact on sugarcane production. Routine monitoring of evaporation with reliable accuracy is essential for irrigation scheduling, for more efficient use of the available water resources and for management purposes. An indirect method for estimating evaporation involves measuring the sensible heat flux (H) from which latent energy flux and hence total evaporation can be calculated, as a residual using the shortened energy balance from measurements of net irradiance and soil heat flux. Various methods for measuring H may include Bowen ratio energy balance, eddy covariance (EC), flux variance (FV), optical scintillation, surface renewal (SR) and temperature variance (TV). Each method has its own advantages and disadvantages, in terms of method theoretical assumptions, accuracy, complexity, cost, fetch requirements and power consumption. The TV and SR methods are inexpensive and reasonably simple with a reduced power requirement compared to other methods since they require high frequency air temperature data which is obtained by using an unshielded naturally-ventilated type-E fine-wire thermocouple at a single point above the canopy surface. The TV method is based on the Monin-Obukhov similarity theory (MOST) and uses the mean and standard deviation of the air temperature for each averaging period. Currently, there are two TV methods used for estimating sensible heat flux (HTV) at sub-hourly time intervals, one includes adjustment for stability, and a second that includes adjustment for air temperature skewness. Another method used to estimate sensible heat flux from the mean and standard deviation of air temperature is based on MOST and uses spatial second-order air temperature structure function. For the TV method adjusted for stability and the method based on MOST that uses a spatial second-order air temperature structure function, the Monin-Obukhov atmospheric stability parameter () is needed. The parameter can be estimated from EC measurements or alternatively estimated independently using an iteration process using horizontal wind speed measurements. The TV method including adjustment for air temperature skewness requires the mean and standard deviation of the air temperature and air temperature skewness for each averaging time period as the only input. The SR method is based on the coherent structure concept. Currently, there are various SR models method for estimating sensible heat flux. These include an ideal SR analysis model method based on an air temperature structure function analysis, the SR analysis model with a finite micro-front period, combined SR with K-theory and combined SR model method based on MOST. The ideal SR analysis model based on an air temperature structure function analysis should be calibrated to determine the SR weighting factor (). The other SR approaches require additional measurements such as crop height and horizontal wind speed measurements. In all of the SR approaches, air temperature time lags are used when calculating the air temperature structure functions. In this study, the performance of TV and SR methods were evaluated for estimation of sensible heat and latent energy fluxes at different heights for air temperature time lags of 0.4 and 0.8 s for daytime unstable conditions against EC above a sugarcane canopy at the Baynesfield Estate in KwaZulu-Natal, South Africa. For all methods, latent energy flux (LE) and hence evaporation was estimated as a residual from the shortened energy balance equation using H estimates and net irradiance and soil heat flux density measurements. The ideal SR analysis model method based on an air temperature structure function analysis approach was calibrated and validated against the EC method above the sugarcane canopy using non-overlapping data sets for daytime unstable conditions during 2008. During the calibration period, the SR weighting factor was determined for each height and air temperature time lag. The magnitude of ranged from 0.66 to 0.55 for all measurement heights and an air temperature time lag of 0.8 s. The value increased with a decrease in measurement height and an increase in air temperature time lag. For the validation data set, the SR sensible heat flux (HSR) estimates corresponded well with EC sensible heat flux (HEC) for all heights and both air temperature time lags. The agreement between HSR and HEC improved with a decrease in measurement height for the air temperature time lag of 0.8 s. The best HSR vs HEC comparisons were obtained at a height of 0.20 m above the crop canopy using = 0.66 for an air temperature time lag of 0.8 s. The residual estimates of latent energy flux by SR and EC methods were in good agreement. The LESR at a height of 0.20 m above the canopy yielded the best comparisons with LEEC estimated as a residual. The performance of the TV method, including adjustment for stability, and / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
|
185 |
Improving Evaporation Rate of Mine WastewaterKhumalo, Londiwe Thandeka Precious January 2018 (has links)
Magister Scientiae - MSc (Biotechnology) / The treatment of mine water at the eMalahleni Water Reclamation Plant (EWRP) results in the
production of large volumes of brine. Different brine management methods have been applied
to dispose the brine but the evaporation pond method is regarded as the cheaper, most effective
and less laborious method for brine disposal. Brine wastewater is pumped into the pond where
it evaporates resulting in the mixture of salts. The rate at which evaporation occurs is influenced
by many factors such as temperature, salinity, humidity and wind. Due to high salinities in
brine the EWRP is currently experiencing a challenge with low evaporation rate. Here, a
comparative study was done to determine the efficiency of using a chemical and a biological
approach to enhance the evaporation rate of reject brine. The chemical approach involved the
addition of various concentrations of methylene blue dye (100 to 300 ppm with 50 ppm
increments) to 1L volumes of brine, and measuring the evaporation rate. On the other hand, the
biological approach involved the isolation of pigmented halophilic bacteria from eMalahleni
brine and Cerebos salt samples. Isolated bacterial strains were characterised based on their
morphology, biochemical and salt tolerance characteristics. Furthermore, the strains were
identified using 16S rRNA gene sequence analysis. Among the isolated halophilic bacterial
strains, EP-3, an Arthobacter agilis isolated from the eMalahleni brine produced a darker
pigment compared to the other strains. Therefore, EP-3 was evaluated for its effect on the
evaporation of brine using a culture inoculum or the addition pigment extracted from an EP-3
culture. The addition of MB above 100 ppm overcame the effect of salt precipitation and
resulted in higher evaporation (41%) rate. Addition of pigmented bacteria or bacterial extracted
pigment to the brine respectively resulted in 18% and 24% increase in the evaporation rate.
|
186 |
Évaporation en milieu poreux en présence de sel dissous. Structure et lois de croissance des efflorescences / Evaporation in porous media in presence of dissolved salt. Structure and growth laws of efflorescencesDuenas Velasco, Mauricio 20 May 2016 (has links)
L’évaporation d’une solution saline en milieu poreux intervient dans diverses situations comme lors de l’injection de dioxyde de carbone dans des aquifères salins ou dans des processus de dégradation des monuments ou de la végétation. Un aspect clé est la cristallisation des sels dissous à la surface ou au sein du milieu poreux résultant de l’évaporation de la solution. Dans la première partie de ce manuscrit, nous étudions le séchage d’un milieu poreux modèle initialement saturé par une solution aqueuse de chlorure de sodium pour différentes tailles moyennes de pores et différents flux d’évaporation. Ceci nous permet d’obtenir une caractérisation des cristaux formés en surface (efflorescence) en fonction de ces paramètres. Nous nous intéressons ensuite tout particulièrement au cas où l’efflorescence forme une croûte d’apparence compacte. Un aspect intrigant est que cette croûte ne bloque pas complètement l’évaporation. Le taux d’évaporation est réduit d’un ordre de grandeur environ. Une modélisation de la croissance de la croûte est développée pour expliquer ce phénomène. Dans une deuxième partie du manuscrit, nous nous intéressons au phénomène relié à la croissance d’un efflorescence “rampante” à la surface d’un substrat solide, dans notre cas la surface externe d’un tube capillaire droit dont une extrémité est plongée dans une solution de chlorure de sodium. Les lois de croissance de ce phénomène sont caractérisées à partir du suivi temporel par double pesée de la masse d’eau évaporée et de la masse de sel qui précipite ainsi que de la géométrie de l’enveloppe externe de la couche de sel recouvrant progressivement le capillaire. Ici encore, l’analyse du phénomène de croissance est confortée par une modélisation numérique simple. Un aspect important de ce travail est le recours à des techniques de visualisations modernes (microtomographie à rayons X, microscopie électronique à balayage, scanner de surface à lumière structurée) pour obtenir autant d’informations que possible sur la structure des efflorescences et les mécanismes de croissance mis en jeu dans ces expériences. / Evaporation of saline solution in porous media occurs in various situations such as injection of carbon dioxide in saline aquifers or in degradation processes on monuments or on vegetation. A key aspect is the crystallization of dissolved salts on the surface or in the porous medium resulting from the evaporation of the solution. In the first part of this manuscript, we study the drying of model porous media model initially saturated with an aqueous solution of sodium chloride, for different average pore sizes and different evaporation fluxes. This allows us to obtain a characterization of the salt crystals formed on the surface (efflorescence) depending on these parameters. We are particularly interested in the case when the efflorescence forms an apparently compact crust. An intriguing aspect is that the crust does not completely block the evaporation. The evaporation rate is in fact reduced by an order of ten. To explain this phenomenon, a model of the growth of the crust is developed. In a second part of the manuscript, we are interested in the growth of a salt efflorescence by “creeping” on a solid substrate, here the outer surface of a straight capillary tube, with one end immersed in a sodium chloride solution. The growth laws of this phenomenon are characterized by weighing both the mass of water evaporated and the mass of salt that precipitates, as well as recording the geometry of the outer casing of the salt layer gradually covering the capillary. Again, the analysis of this growth phenomenon is supported by a simple numerical model. An important aspect of this work is the use of up-todate visuablisation techniques (such as X-ray micro-tomography, scanning electron microscopy and structuredlight surface scanning) to get as much as possible additional information on the efflorescence structure and growth mechanism at play in these experiments.
|
187 |
Evaporation of Water from Soil-like, Leaf-like Surfaces and Unconventional Porous MediaNavneet Kumar, * January 2016 (has links) (PDF)
RBCCPS / Evaporation is one of the inherent processes of the earth’s ecosystem. Water bodies, earth’s surface and vegetation all contribute significantly towards the total evaporation which eventually leads to the formation of clouds. The factors which affect the total evaporation (evaporation & transpiration) are the surface temperature, ambient temperature, relative humidity, external wind speed, pressure, surface area and geometry.
This thesis deals with the contributors of total evaporation individually viz. open water bodies; soil-like surfaces; and leaf-like surfaces. A ceramic infrared heater has been used to mimic the heating due to sun’s radiation in all the experiments which were conducted in the quiescent atmosphere. This thesis has been broadly categorized into two parts: - (a) evaporation from bare water surface; and (b) evaporation from a porous media. In part (a), we present experimental results on the evaporation from a bare water surface heated either from above using the infrared radiations or from below using immersed heaters. Heating from below leads to unstable stratification and convection while infrared heating from above leads to stable stratification. The effect of water-side convection on the evaporation from a bare water surface has been investigated and all the experimental results have been combined to obtain a power law relation between Sherwood number (Sh) and Rayleigh number (Ra). Part (b) of the thesis has been further split into three major categories: - (1) evaporation from spheres based conventional porous media; (2) evaporation from unconventional porous media containing rods, capillaries, and plates; and (3) evaporation from leaf-like surfaces. In all the experiments, a precision weighing balance was used to measure the evaporation rate. A thermal camera was used to get the surface temperature fields, and fluorescein dye mixed with water gave insightful results on the evaporation process. In particular the red deposits of fluorescein particles revealed the evaporation sites. In most of the experiments, the infrared heating was of the order of 1000W/m2. Different sized glass and acrylic containers were used in this thesis.
Mono-disperse glass beads (closest to mimic the natural soils), stainless steel balls, sieved natural sand and hydrophobic Ball Grid Array balls have been used to create the spheres-based conventional porous media. Evaporation was found to undergo three stages which depended on the spheres size and the heat flux supplied. In the 1st stage of evaporation capillary film(s) pulls water from beneath the porous media to the top surface and the evaporation rate remained high, close to that obtained from a water surface. Capillary break-up occurs in the transition regime which is followed by the 2nd stage of evaporation where a new vaporization plane is formed within the porous media. In the 2nd stage, heat is conducted through the top dried layer to the water below where evaporation takes place and the evaporation rate drops drastically. Transition to 2nd stage happened earlier for coarser spheres at constant heat flux. Along with the wetting properties, the spheres size has been found to effect capillary break-up length (a measure of capillary film strength) and hence the duration of the stages of evaporation drastically. Surface images captured using the thermal camera clearly showed the presence of water till the capillary break-up. The capillary break-up length was also found to be affected significantly by the heat flux. Apart from the experimental findings of mono-disperse spheres, two layers of different sized glass spheres have also been investigated. The presence of complicated network of textural layering in the earth’s surface is a well-known fact. Preferential evaporation was clearly seen in the experiments with texturally layered porous media
independent of the orientation viz. vertical or horizontal layering. The stacking positions are found to be critical in determining the overall evaporation characteristics.
The geometry of a pore between three spheres in mutual contact is very complicated. Simpler pore geometry would be between two rods/plates in contact or three rods in mutual contact or stacks of either of these two. We call these types of the porous media as “Unconventional porous media” as they possess many unique features not shown by a conventional porous media. The evaporation characteristics of vertically stacked rods was found to be dominated by the corner films present in the near-zero radii contacts. Unlike the conventional porous media, the capillary break-up length was found not to depend on the rod diameter. The capillary break-up length for vertically stacked rods was larger than for the spheres case and was also found to be independent of the heat flux, for the range investigated in this thesis. A mathematical model has been developed for understanding the evaporation from the vertically stacked rods. Experiments with horizontally stacked pencil leads showed early capillary break-up while with horizontally stacked glass rods, capillary break-up was not observed. Experimental investigations of porous media containing vertically stacked plates have also been studied. Water trapped between two consecutive plates are treated as 2D source of evaporation.
Plants regulate their O2-CO2 content via tiny holes present on the leaves called “Stomata”. The average size of a stoma is nearly 20μm and the total area covered by stomata is close to 5% of the leaf area. However the higher transpiration rates (60-70 % compared to a bare water source) sustained by a plant has remained a mystery for the phytologists. In view of this we mimic the leaf-type using regularly spaced holes on the silicon wafers from which water evaporates. The leaf-mimics had different hole-diameter but open area ratio was kept constant. In all the cases the evaporation ratio (ratio of the evaporation rate from the leaf mimic to that of the evaporation rate of a bare water surface at the same surface temperature) was found to increase at lower heat fluxes. With increasing the hole-size evaporation rate was found to decrease. The leaf-mimic with the smallest hole-size had the highest evaporation rate and the evaporation ratio increased from 0.46 at 800W/m2 to 0.64 at 400W/m2. The 3D nature of diffusion near these tiny holes enhances the evaporative flux which explains the high evaporation rates even for low open area ratios.
|
188 |
Étude de l'évaporation d'aérosols liquides semi-volatils collectés sur médias fibreux / Study of the evaporation of liquid semi-volatil aerosols collected on fibrous filtersSutter, Benjamin 03 November 2009 (has links)
Cette étude s’inscrit dans le cadre de l’amélioration des connaissances liées à l’évaporation d’aérosols liquides semi-volatils collectés sur des filtres à fibres. Le phénomène d’évaporation d’aérosols collectés sur médias fibreux induit des problèmes de sécurité avec notamment une surexposition des salariés aux vapeurs, à l’aval des systèmes généraux de filtration de l’air. De plus, lors des contrôles des concentrations atmosphériques des aérosols, l’évaporation induit une sous-estimation de la phase particulaire de l’aérosol prélevé qui est problématique en termes de prévention de l’exposition. L’objectif de ces travaux a donc été de produire de nombreux résultats expérimentaux afin, d’une part, de compléter les rares présents dans la littérature et, d’autre part, d’améliorer les modèles théoriques développés précédemment. Deux approches expérimentales ont été menées afin d’identifier le processus d’évaporation d’un aérosol collecté. La première, nommée approche globale, permet de suivre l’évaporation de l’aérosol par la quantification des vapeurs à l’aval du filtre, au cours du temps. La seconde, nommée approche microscopique, étudie l’évaporation de gouttes collectées sur les fibres d’une fibre à l’échelle microscopique. Les deux approches réalisées lors de ces travaux s’accordent sur le fait que l’évaporation d’un aérosol liquide semi-volatil ne peut être modélisée par les modèles proposés par la littérature. Des hypothèses ont été avancées afin d’expliquer la divergence de cinétique d’évaporation entre la théorie et les expérimentations / This study falls within the scope of improving knowledge concerning evaporation of semi-volatile liquid aerosols collected on fibrous filters. Under these conditions, the aerosol evaporation phenomenon causes problems of safety, in particular over-exposure of employees to vapours downstream of general air filtering systems. Furthermore, when controlling aerosol atmospheric concentrations, evaporation results in under-estimation of the sampled aerosol particle phase and this is clearly problematic in exposure prevention terms. The aim of this work was therefore to record a large number of experimental data, both to make up for their scarcity in the literature and to improve previously developed theoretical models. Two experimental approaches were implemented to identify the evaporation process for a collected aerosol. The first, termed the global approach, allowed us to monitor aerosol evaporation by measuring vapour quantity downstream of the filter with respect to time. The second, microscopic, approach considers evaporation of droplets collected on the filter fibres on a microscopic scale. The two approaches implemented during this research lead to agreement on the fact that evaporation of a liquid semi-volatile aerosol cannot be satisfactorily represented by the theoretical models proposed in the literature. Hypotheses are advanced to explain the divergence in evaporation kinetics between theoretical and experimental work
|
189 |
Amélioration de l'évaporation des gouttes à l'aide de nanoparticules et d'alcools / Enhancement of drops evaporation using nanoparticles and alcoholsChen, Pin 14 February 2018 (has links)
Au cours des dernières années, les exigences croissantes en matière de dissipation thermique à haut rendement pour la microélectronique, les engins spatiaux, les réacteurs nucléaires, etc., encouragent le développement d'échangeurs de chaleur de nouvelle génération. Le caloduc est l’un des équipements de refroidissement efficaces et potentiels. La plupart du transfert de masse et de chaleur se fait au niveau de la micro-région près de la ligne triple de contact (solide, liquide, vapeur), qui est essentielle à l'amélioration de la performance thermique du caloduc. Cette étude se concentre sur le processus d'évaporation de gouttes sessiles de deux nouveaux fluides de travail (solution binaire et nanofluide), qui possèdent une micro-région similaire à celle du caloduc. Le flux de Marangoni induit par le gradient de concentration et la conductivité thermique exceptionnelle devraient améliorer significativement le débit evaporé du mélange alcool-eau et du nanofluide de graphène, respectivement. Une combinaison de techniques acoustiques et infrarouges est développée pour suivre la variation de la concentration d'alcool pendant l'évaporation des gouttes des mélanges 1-butanol-eau et éthanol-eau. Selon l'observation du comportement d'évaporation à différentes températures du substrat, une série d'équations empiriques est suggérée pour prédire le taux d'évaporation de la solution binaire de 1-butanol-eau en considérant l'effet Marangoni thermal et solutal. De plus, l'effet de la PEGylation, de la concentration des nanoparticules et de la température du substrat sur l'évaporation de gouttes de graphène nanofluide est étudié par des méthodes microscopiques, optiques et infrarouges. Les résultats expérimentaux et l'analyse thermodynamique peuvent contribuer à la compréhension complète du mécanisme impliqué concernant les performances d'évaporation du nanofluide de graphène. / In recent years, increasing requirement in high efficient heat dissipation for micro-electronics, spacecraft, nuclear reactors etc., encourage the development of next generation heat exchanger. Heat pipe is one of potential effective cooling equipments and most of mass and heat transfer take place at micro-region near triple phase (solid, liquid, vapor) contact line of working fluid, which is essential to thermal performance improvement of heat pipe. This study focuses on the evaporation process of sessile droplets of two novel working fluids (binary solution and nanofluid), which possess similar micro-region to that in heat pipe. Concentration gradient induced Marangoni flow and exceptional thermal conductivity are expected to significantly enhance evaporation rate of alcohol-water mixture and graphene nanofluid, respectively. A combination of acoustic and infrared techniques is developed to track alcohol concentration variation during evaporation of 1-butanol and ethanol aqueous droplets. According to observation of evaporation behavior at different substrate temperature, a series of empirical equations is suggested to predict evaporation rate of 1-butanol-water binary solution droplet considering thermal and solutal Marangoni effect. In addition, the effect of PEGylation, nanoparticle concentration and substrate temperature on drop evaporation of graphene nanofluid are investigated by microscopic, optical and infrared methods. Experimental results and thermodynamic analysis can contribute to the full understanding of involved mechanism concerning evaporation performance of graphene nanofluid.
|
190 |
Synoptic investigations of the summer climate and lake evaporation in Québec-LabradorPetzold, Donald Emil, 1949- January 1980 (has links)
No description available.
|
Page generated in 0.097 seconds