• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Evidence Suggests Multiple Evolutionary Origins of Sociality in the Polyphenic Spider <em>Anelosimus studiosus</em> (Araneae: Theridiidae).

Weber, Nathaniel O 18 December 2010 (has links) (PDF)
Anelosimus studiosus exhibits two behavioral phenotypes: subsocial and social. This is the only documented spider inhabiting a temperate climate exhibiting social behavior. While the subsocial phenotype is most common throughout the range, the social behavior occurs in isolated pockets in northern latitudes. This study examines the origins of the social phenotype within a segment of the spider's range. Two hypotheses are tested: 1) pockets of social behavior represent a single origin or 2) pockets of social behavior represent local evolutions, thus leading to multiple origins of evolution. Microsatellite loci were used to determine genetic structure of the population and to estimate the origins of social behavior. All loci showed lower observed than expected heterozygosities and all populations show indications of high levels of inbreeding. A phylogeny indicates four of the six populations fall out by location, not phenotype. We propose these results reflect multiple local evolutions of the social strategy.
2

Neurochemical Levels Correlate with Population Level Differences in Social Structure and Individual Behavior in the Polyphenic Spider, <em>Anelosimus studiosus</em>.

Price, Jennifer Bryson 18 December 2010 (has links) (PDF)
Anelosimus studiosus is a socially polyphenic spider. Individuals can be classified as social/tolerant or solitary/aggressive. These behavioral differences are associated with considerable variation in social structure. Here, we begin to examine the physiological differences that may underlie the behavioral dimorphism in this species and possible implications for the evolution of sociality. Octopamine is a neurotransmitter that has been found to elevate aggression in invertebrates. Serotonin has been shown, in some cases, to interact antagonistically with octopamine. We used High Pressure Liquid Chromatography with Electrochemical Detection to quantify levels of these neurochemicals among adult females from social (multi-female) and solitary (single-female) webs in east Tennessee. A subset of spiders was scored for individual social tendency. We found that higher octopamine levels are associated with a greater degree of aggression and intolerance, both at the individual level and the population level, while higher levels of serotonin are found in multi-female colonies and social individuals.
3

Exploring the Relationship Between Behaviour and Neurochemistry in the Polyphenic Spider, Anelosimus studiosus (Araneae: Theridiidae)

Price, Jennifer B 01 August 2016 (has links)
The importance of social behaviour is evident in human society, but there are both costs and benefits associated with cooperation and sociality throughout the animal kingdom. At what point do the benefits outweigh the costs, and when do selective pressures favour sociality and colonization over solitude and independence? To investigate these questions, we have focused on an anomalous species of spider, Anelosimus studiosus, also known now as the northern social spider. Throughout its broad range, A. studiosus is solitary and aggressive, but recently, colonies of cooperative and social individuals have been observed at northern latitudes. This leads to two research questions: 1) what characteristics differentiate the two variants behaviourally, and, 2) how are they different physiologically? Colonies and individuals were collected from multiple populations throughout the Tennessee River watershed area and maintained in a laboratory environment for quantitative and qualitative assessment of behavioural traits as well as specific neurochemical analysis by high performance liquid chromatography with electrochemical detection. After classifying individuals as social or aggressive, I looked at the influence of factors such as age, reproductive state, nutritional state, and time of day on behaviour and neurophysiology. I found correlations between social behaviours and serotonin, aggressive behaviours and octopamine (invertebrate counterpart of norepinephrine), and several other compounds associated with an increase or decrease in aggression. These studies combine techniques from multiple disciplines to contribute to the greater understanding of the proximate control of social and aggressive behaviours as well as factors influencing the evolution of sociality.

Page generated in 0.0937 seconds