• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 112
  • 43
  • 18
  • 10
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 366
  • 366
  • 119
  • 115
  • 93
  • 64
  • 64
  • 62
  • 59
  • 59
  • 51
  • 47
  • 43
  • 42
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Tratamento de dados faltantes empregando biclusterização com imputação múltipla / Treatment of missing data using biclustering with multiple imputation

Veroneze, Rosana, 1982- 18 August 2018 (has links)
Orientadores: Fernando José Von Zuben, Fabrício Olivetti de França. / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-18T15:42:38Z (GMT). No. of bitstreams: 1 Veroneze_Rosana_M.pdf: 1996086 bytes, checksum: d4be557c3ffb4512e37232c537c78721 (MD5) Previous issue date: 2011 / Resumo: As respostas fornecidas por sistemas de recomendação podem ser interpretadas como dados faltantes a serem imputados a partir do conhecimento dos dados presentes e de sua relação com os dados faltantes. Existem variadas técnicas de imputação de dados faltantes, sendo que o emprego de imputação múltipla será considerado neste trabalho. Também existem propostas alternativas para se chegar à imputação múltipla, sendo que se propõe aqui a biclusterização como uma estratégia eficaz, flexível e com desempenho promissor. Para tanto, primeiramente é realizada a análise de sensibilidade paramétrica do algoritmo SwarmBcluster, recentemente proposto para a tarefa de biclusterização e já adaptado, na literatura, para a realização de imputação única. Essa análise mostrou que a escolha correta dos parâmetros pode melhorar o desempenho do algoritmo. Em seguida, o SwarmBcluster é estendido para a implementação de imputação múltipla, sendo comparado com o bem-conhecido algoritmo NORM. A qualidade dos resultados obtidos é mensurada através de métricas diversas, as quais mostram que a biclusterização conduz a imputações múltiplas de melhor qualidade na maioria dos experimentos / Abstract: The answers provided by recommender systems can be interpreted as missing data to be imputed considering the knowledge associated with the available data and the relation between the available and the missing data. There is a wide range of techniques for data imputation, and this work is concerned with multiple imputation. Alternative approaches for multiple imputation have already been proposed, and this work takes biclustering as an effective, flexible and promising strategy. To this end, firstly it is performed a parameter sensitivity analysis of the SwarmBcluster algorithm, recently proposed to implement biclustering and already adapted, in the literature, to accomplish single imputation of missing data. This analysis has indicated that a proper choice of parameters may significantly improve the performance of the algorithm. Secondly, SwarmBcluster was extended to implement multiple imputation, being compared with the well-known NORM algorithm. The quality of the obtained results is computed considering diverse metrics, which reveal that biclustering guides to imputations of better quality in the majority of the experiments / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
272

Desenvolvimento de modelos e algoritmos sequenciais e paralelos para o planejamento da expansão de sistemas de transmissão de energia elétrica / Development of mathematical models, sequential and parallel algorithms for transmission expansion planning

Sousa, Aldir Silva 16 March 2012 (has links)
O principal objetivo deste estudo é propor uma nova metodologia para lidar com o problema de Planejamento da Expansão de Redes de Transmissão de Energia Elétrica com Múltiplos Cenários de Geração (PERTEEG). Com a metodologia proposta neste trabalho almeja-se construir planos de expansão de redes de transmissão de energia elétrica que sejam capazes de, no menor custo de investimento possível, satisfazer às novas exigências dos sistemas elétricos modernos, tais como construção de redes de transmissão livres de congestionamento e robustas à incerteza em relação aos cenários de geração futuros. Através de estudos realizados na literatura do problema, verificou-se que novos modelos e metodologias de abordagem do PERTEEG se fazem necessários. Ao se modelar o PERTEEG visando construir redes de transmissão que contornem as incertezas em relação aos cenários de geração futuros e concomitantemente minimizar o custo de investimento para a expansão do sistema, o planejador se depara com um problema de otimização multiobjetivo. Existem na literatura da pesquisa operacional diversos algoritmos que visam lidar com problemas multiobjetivos. Nesta tese, foram aplicados dois desses algoritmos: Nondominated Sorting Genetic Algorithms-II (NSGA-II) e SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). Em primeira análise, se destacou uma das maiores dificuldade de lidar com o PERTEEG, a saber, o esforço computacional elevado. Por isso, vislumbrou-se que uma possível solução para contornar esta dificuldade esteja na computação paralela. Para se confirmar esta suspeita, nesta tese foram implementadas versões paralelas dos algoritmos sequenciais testados. A qualidade das soluções encontradas pelos algoritmos foram bastante superiores às soluções encontradas pelos algoritmos sequenciais. Neste trabalho também será mostrado que as soluções ótimas clássicas considerando somente o objetivo de m´mínimo custo são incapazes de atender às novas necessidades dos sistemas elétricos de potência. Testes computacionais foram realizados e analisados neste trabalho. Considerando as metodologias conhecidas na literatura para medição da qualidade das soluções encontradas por algoritmos multiobjetivo, se pode afirmar de que a proposta de abordagem do problema de PERTEEG pode ser viável tanto do ponto de vista de engenharia como do ponto de vista da computação matemática. / The main objective of this study is to propose a new methodology to deal with the long-term transmission system expansion planning with multiple generation dispatch scenarios problem (TEP-MDG). With the methodology proposed in this thesis we aim to build expansion plans with minimum investment cost and also capable of meeting the new demands of modern electrical systems, such as uncertainty about the future generation scenarios and congestion in the transmission systems. By modeling the TEP-MDG aiming to build transmission networks that circumvent the uncertainties regarding the future generation scenarios and simultaneously minimize the cost of investment for transmission networks expansion, the planner faces a multiobjective optimization problem. One can find various algorithms that aim to deal with multiobjective problems in the literature of operations research. In this thesis, we apply two of these algorithms: Nondominated Sorting Genetic Algorithms-II (NSGA-II) and SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). In a first analysis, we have found that the most critical issue with the TEP-MOG is the high computational demand. Therefore, in order to circumvent this difficulty we have implemented parallel versions of the sequential algorithms tested. In performed tests, the parallel algorithms have found solutions of superior quality than the solutions found by the sequential algorithms. In this thesis we also show that optimal solutions considering only the classical least cost objective are unable to meet the electric power systems new demands. Tests have been performed and analyzed in this work. By considering the methods known in the literature convinced to measure the quality of solutions found by multiobjective algorithms, we concluded that the proposed approach to TEP-MDG may be feasible from the point of view of both engineering and computational mathematics.
273

Klasifikace obrazů pomocí genetického programování / Image Classification Using Genetic Programming

Jašíčková, Karolína January 2018 (has links)
This thesis deals with image classification based on genetic programming and coevolution. Genetic programming algorithms make generating executable structures possible, which allows us to design solutions in form of programs. Using coevolution with the fitness prediction lowers the amount of time consumed by fitness evaluation and, therefore, also the execution time. The thesis describes a theoretical background of evolutionary algorithms and, in particular, cartesian genetic programming. We also describe coevolutionary algorithms properties and especially the proposed method for the image classifier evolution using coevolution of fitness predictors, where the objective is to find a good compromise between the classification accuracy, design time and classifier complexity. A part of the thesis is implementation of the proposed method, conducting the experiments and comparison of obtained results with other methods.
274

Evoluční algoritmy pro ultrazvukovou perfúzní analýzu / Evolution algorithms for ultrasound perfusion analysis

Kolářová, Jana January 2019 (has links)
This master´s thesis is focused on the application of evolutionary algorithms for interleaving data obtained by ultrasound scanning of tissue. The interleaved curve serves to estimate perfusion parameters, thus allowing to detect possible pathophysiology in the scanned area. The theoretical introduction is devoted to perfusion and its parameters, contrast agents for ultrasonic application, ultrasonic modality scanning, optimization, evolutionary algorithms in general and two selected evolutionary algorithms - genetic algorithm and bee algorithm. These algorithms were tested on noisy data obtained from clinical images of mice with tumor. The final part summarizes the results of the practical part and provides suggestions and recommendations for further possible development.
275

Možnosti akcelerace symbolické regrese pomocí kartézského genetického programování / Acceleration of Symbolic Regression Using Cartesian Genetic Programming

Hodaň, David January 2019 (has links)
This thesis is focused on finding procedures that would accelerate symbolic regressions in Cartesian Genetic Programming. It describes Cartesian Genetic Programming and its use in the task of symbolic regression. It deals with the SIMD architecture and the SSE and AVX instruction set. Several optimizations that lead to a significant acceleration of evolution in Cartesian Genetic Programming are presented. A method of a bit-level parallel simulation that uses AVX2 vectors allows to process 256 input combinations of a logic circuit in paralell. Similarly it is possible to use a byte-level parallel simulation and work with 32 bytes when evolving an image filter. A new method of batch mutation can accelerate the evolution of combinational logic circuits thousand times depending on the problem size. For example, using a combination of these and other methods the evolution of 5 x 5b multipliers took 5.8 seconds on average on an Intel Core i5-4590 processor.
276

Evoluční návrh neuronových sítí využívající generativní kódování / Evolutionary Design of Neural Networks with Generative Encoding

Hytychová, Tereza January 2021 (has links)
The aim of this work is to design and implement a method for the evolutionary design of neural networks with generative encoding. The proposed method is based on J. F. Miller's approach and uses a brain model that is gradually developed and which allows extraction of traditional neural networks. The development of the brain is controlled by programs created using cartesian genetic programming. The project was implemented in Python with the use of Numpy library. Experiments have shown that the proposed method is able to construct neural networks that achieve over 90 % accuracy on smaller datasets. The method is also able to develop neural networks capable of solving multiple problems at once while slightly reducing accuracy.
277

Vysokoúrovňové objektově orientované genetické programování pro optimalizaci logistických skladů / High-Level Object Oriented Genetic Programming in Logistic Warehouse Optimization

Karásek, Jan January 2014 (has links)
Disertační práce je zaměřena na optimalizaci průběhu pracovních operací v logistických skladech a distribučních centrech. Hlavním cílem je optimalizovat procesy plánování, rozvrhování a odbavování. Jelikož jde o problém patřící do třídy složitosti NP-težký, je výpočetně velmi náročné nalézt optimální řešení. Motivací pro řešení této práce je vyplnění pomyslné mezery mezi metodami zkoumanými na vědecké a akademické půdě a metodami používanými v produkčních komerčních prostředích. Jádro optimalizačního algoritmu je založeno na základě genetického programování řízeného bezkontextovou gramatikou. Hlavním přínosem této práce je a) navrhnout nový optimalizační algoritmus, který respektuje následující optimalizační podmínky: celkový čas zpracování, využití zdrojů, a zahlcení skladových uliček, které může nastat během zpracování úkolů, b) analyzovat historická data z provozu skladu a vyvinout sadu testovacích příkladů, které mohou sloužit jako referenční výsledky pro další výzkum, a dále c) pokusit se předčit stanovené referenční výsledky dosažené kvalifikovaným a trénovaným operačním manažerem jednoho z největších skladů ve střední Evropě.
278

Optimization of Aircraft Tracker Parameters / Optimization of Aircraft Tracker Parameters

Samek, Michal January 2015 (has links)
Diplomová práce se zabývá optimalizací systému pro sledování letadel, využívaného pro řízení letového provozu. Je popsána metodika vyhodnocování přesnosti sledovacího systému a přehled relevantních algoritmů pro sledování objektů. Dále jsou navrženy tři přístupy k řešení problému. První se pokouší identifikovat parametry filtrovacích algoritmů pomocí algoritmu Expectation-Maximisation, implementací metody maximální věrohodnosti. Druhý přístup je založen na prostých odhadech parametrů normálního rozložení z naměřených a referenčních dat. Nakonec je zkoumána možnost řešení pomocí optimalizačního algoritmu Evoluční strategie. Závěrečné vyhodnocení ukazuje, že třetí přístup je pro daný problém nejvhodnější.
279

Koevoluce obrazových filtrů a prediktorů fitness / Coevolution of Image Filters and Fitness Predictors

Trefilík, Jakub January 2015 (has links)
This thesis deals with employing coevolutionary principles to the image filter design. Evolutionary algorithms are very advisable method for image filter design. Using coevolution, we can add the processes, which can accelerate the convergence by interactions of candidate filters population with population of fitness predictors. Fitness predictor is a small subset of the training set and it is used to approximate the fitness of the candidate solutions. In this thesis, indirect encoding is used for predictors evolution. This encoding represents a mathematical expression, which selects training vectors for candidate filters fitness prediction. This approach was experimentally evaluated in the task of image filters for various intensity of random impulse and salt and pepper noise design and the design of the edge detectors. It was shown, that this approach leads to adapting the number of target objective vectors for a particular task, which leads to computational complexity reduction.
280

Akcelerace evolučního návrhu obvodů na úrovni tranzistorů na platformě Zynq / Acceleration of Transistor-Level Evolutionary Design of Digital Circuits Using Zynq

Mrázek, Vojtěch January 2014 (has links)
The goal of this project is to design a hardware unit that is designed to accelerate evolutionary design of digital circuits on transistor level. The project is divided to two parts. The first one describes design methods of the MOSFET circuits and issues of evolutionary algorithms. It also analyses current results in this domain and provides a new method for the design and optimization. The second part describes proposed unit that accelerates the new method on the circuit Zynq which integrates ARM processor and programmable logic. The new method functionality has been empirically analysed in the task of optimization of few circuits with more inputs. The hardware unit has been tested for designing of gates on transistor level.

Page generated in 0.0891 seconds