• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 112
  • 43
  • 18
  • 10
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 366
  • 366
  • 119
  • 115
  • 93
  • 64
  • 64
  • 62
  • 59
  • 59
  • 51
  • 47
  • 43
  • 42
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Estudo da influência dos parâmetros de algoritmos paralelos da computação evolutiva no seu desempenho em plataformas multicore

Pais, Mônica Sakuray 14 March 2014 (has links)
Parallel computing is a powerful way to reduce the computation time and to improve the quality of solutions of evolutionary algorithms (EAs). At first, parallel evolutionary algorithms (PEAs) ran on very expensive and not easily available parallel machines. As multicore processors become ubiquitous, the improved performance available to parallel programs is a great motivation to computationally demanding EAs to turn into parallel programs and exploit the power of multicores. The parallel implementation brings more factors to influence performance, and consequently adds more complexity on PEAs evaluations. Statistics can help in this task and guarantee the significance and correct conclusions with minimum tests, provided that the correct design of experiments is applied. This work presents a methodology that guarantees the correct estimation of speedups and applies a factorial design on the analysis of PEAs performance. As a case study, the influence of migration related parameters on the performance of a parallel evolutionary algorithm solving two benchmark problems executed on a multicore processor is evaluated. / A computação paralela é um modo poderoso de reduzir o tempo de processamento e de melhorar a qualidade das soluções dos algoritmos evolutivos (AE). No princípio, os AE paralelos (AEP) eram executados em máquinas paralelas caras e pouco disponíveis. Desde que os processadores multicore tornaram-se largamente disponíveis, sua capacidade de processamento paralelo é um grande incentivo para que os AE, programas exigentes de poder computacional, sejam paralelizados e explorem ao máximo a capacidade de processamento dos multicore. A implementação paralela traz mais fatores que podem influenciar a performance dos AEP e adiciona mais complexidade na avaliação desses algoritmos. A estatística pode ajudar nessa tarefa e garantir conclusões corretas e significativas, com o mínimo de testes, se for aplicado o planejamento de experimentos adequado. Neste trabalho é apresentada uma metodologia de experimentação com AEP. Essa metodologia garante a correta estimação do speedup e aplica ao planejamento fatorial na análise dos fatores que influenciam o desempenho. Como estudo de caso, um algoritmo genético, denominado AGP-I, foi paralelizado segundo o modelo de ilhas. O AGP-I foi executado em plataformas com diferentes processadores multicore na resolução de duas funções de teste. A metodologia de experimentação com AEP foi aplicada para se determinar a influência dos fatores relacionados à migração no desempenho do AGP-I. / Doutor em Ciências
252

Restabelecimento de energia em sistemas de distribuição por algoritmo evolucionário associado a cadeias de grafos / Energy restoration in distribution systems by evolutionary algorithm associated with graph chains

Alexandre Cláudio Botazzo Delbem 14 February 2002 (has links)
O trabalho proposto enfoca a obtenção de planos de restabelecimento de energia de forma automática para a reenergização de redes de distribuição de energia elétrica. Assim sendo, consideram-se situações que deixam regiões do sistema sem energia. A interrupção do serviço pode ser causada por falhas no circuito de distribuição ou pela necessidade de isolar zonas do mesmo para serviços de manutenção. O restabelecimento do fornecimento da energia aos consumidores é um problema com múltiplos objetivos, alguns deles conflitantes. O problema de restabelecimento envolve funções cujas características, em geral, dificultam o uso das técnicas de programação matemática para obter planos de restabelecimento. Além disso, as propostas usando tais metodologias de programação são afetadas intensamente pelo problema de explosão combinatória. Os Algoritmos Evolucionários (AEs) têm apresentado resultados animadores para esse problema. Contudo, tais algoritmos ainda apresentam dificuldades para a rápida obtenção de planos de restabelecimento para redes de tamanho real (grande porte) de maneira a tornar possível sua aplicação em tempo real. Este trabalho propõe uma nova técnica baseada em AEs para o problema de restabelecimento. Essa proposta envolve também um nova forma de representar computacionalmente as redes de distribuição e de modificar a configuração das mesmas. Também é proposto um fluxo de carga específico para ser utilizado com a nova representação. Diversos testes são apresentados utilizando redes com diferentes tamanhos, no intuito de se avaliar a potencialidade da técnica proposta. / The proposed research focus on the automatic elaboration of plans for service restoration in electrical distribution systems. So this research considers situations that leave network regions out-of-service. The service interruption may be caused by faults in the distribution circuit or by isolation of circuit zones for maintenance task. The restoration of the energy supply to the consumers is a multiobjective problem, with a certain degree of conflict. The restoration problem considers functions whose characteristics, in general, difficult the use of mathematical programming techniques to obtain restoration plans. Moreover, the approaches using such functions are intensively affected by the combinatorial explosion problem. The Evolutionary Algorithms have shown relevant results for this problem. Nevertheless, these techniques still have difficulties to obtain restoration plans, in a fast manner, for real size networks (i.e., large size). This work proposes a new methodology based on Evolutionary Algorithms. This approach involves also a new way to computationally represent distribution networks and to modify the network configurations. A specific load flow to be used with the new representation is also proposed. Severals tests are shown, using networks with different sizes, to evaluate the potential of the proposed technique.
253

Aplicação de algoritmos evolucionários à gestão integrada de sistemas de recursos hídricos. / The use of multi-objective evolucionary algorithms in water resource management.

André Schardong 20 June 2011 (has links)
Esta tese estudou a aplicação de algoritmos evolucionários na análise multiobjetivo para gestão integrada de sistemas de recursos hídricos, bem como a sua integração à sistemas de suporte a decisão como o SSD AcquaNet e ModSim DSS. Dois algoritmos evolucionários multi-objetivo são desenvolvidos: MoDE-NS e MoPSO-NS e comparados ao NSGA-II. Os algoritmos foram desenvolvidos em forma de Sistema de Otimização que possibilita a análise de problemas multi-objetivo de forma generalizada com foco em sistemas de recursos hídricos. A possibilidade de integração com o SSD AcquaNet e o ModSim DSS via importação de rede de fluxo e a otimização conjunta, são apresentadas e exploradas. Uma ferramenta de visualização gráfica do conjunto de soluções não dominadas é incluída no Sistema de Otimização. Os algoritmos desenvolvidos foram aplicados a problemas de teste padrão para validação através da comparação de seus resultados ao NSGA-II. As possibilidades de aplicação do sistema de otimização e dos algoritmos evolucionários multi-objetivo foram exploradas inicialmente através de análise multi-objetivo do modelo chuva-vazão Smap com dois e cinco objetivos. Em seguida, a análise foi estendida a um sistema de recursos hídricos complexo, o Sistema Cantareira, responsável pelo abastecimento de aproximadamente metade da RMSP, que corresponde à aproximadamente 33 m³/s. A análise foi realizada comparando dois pares de funções objetivos envolvendo custos de energia elétrica, minimização de déficit no atendimento às demandas e minimização do desvio da qualidade da água em relação à Classe de enquadramento no rio Atibaia, a jusante do reservatório Atibainha e Cachoeira. Os resultados apontam que os algoritmos evolucionários multi-objetivo são aptos para aplicação na análise integrada de sistemas de recursos hídricos e representam uma boa alternativa aos métodos denominados clássicos, pelas suas características peculiares discutidas no trabalho. Algumas recomendações quanto ao uso dos algoritmos abordados para análise de problemas multi-objetivo foram apresentados. / This Thesis presents an application of evolutionary algorithms in multi-objective analysis for integrated management of water resources systems and their integration into decision support systems as AcquaNet and ModSim DSS. Two multi-objective evolutionary algorithms are developed: MoDE-NS-NS and MoPSO-NS and compared to NSGA-II. The algorithms are developed in the form of Optimization System which enables generalized multi-objective analysis with a focus on water resources systems. The possibilities for integration with AcquaNet and ModSim DSS, by importing network flow directly from them or by integrated optimization/simulation are also presented. A graphical visualization tool for the set of non-dominated solutions is also included in Optimization System. The algorithms are applied to common test problems set for validation by comparing its results to the NSGA-II. The possibilities of application of the developed Optimization System and multi-objective evolutionary algorithms are initially exploited by multi-objective analysis of a hydrological rainfall-runoff model Smap, with two and five objectives. Then, the analysis is extended to a complex water resources system, the Cantareira System, responsible for supplying nearly half of the Sao Paulo metro area, which corresponds to approximately 33 m³/s. The analysis is done by comparing two pairs of objective functions: minimization of demand shortage versus minimization of pumping cost and minimization of demand shortage versus minimization of the deviation from water quality standards. The results show that the multi-objective evolutionary algorithms are suitable for application to integrated analysis of water resources systems and represent a good alternative to the so called classical methods, for its peculiar characteristics discussed on this thesis. The MoDE-NS and MoPSO-NS developed, outperformed NSGA-II results, by obtaining a better coverage of the Pareto fronts especially on the water resources system case study.
254

Abordagens para combinar classificadores e agrupadores em problemas de classificação / Approaches for combining classifiers and clusterers in classification problems

Luiz Fernando Sommaggio Coletta 23 November 2015 (has links)
Modelos para aprendizado não supervisionado podem fornecer restrições complementares úteis para melhorar a capacidade de generalização de classificadores. Baseando-se nessa premissa, um algoritmo existente, denominado de C3E (Consensus between Classification and Clustering Ensembles), recebe como entradas estimativas de distribuições de probabilidades de classes para objetos de um conjunto alvo, bem como uma matriz de similaridades entre esses objetos. Tal matriz é tipicamente construída por agregadores de agrupadores de dados, enquanto que as distribuições de probabilidades de classes são obtidas por um agregador de classificadores induzidos por um conjunto de treinamento. Como resultado, o C3E fornece estimativas refinadas das distribuições de probabilidades de classes como uma forma de consenso entre classificadores e agrupadores. A ideia subjacente é de que objetos similares são mais propensos a compartilharem o mesmo rótulo de classe. Nesta tese, uma versão mais simples do algoritmo C3E, baseada em uma função de perda quadrática (C3E-SL), foi investigada em uma abordagem que permitiu a estimação automática (a partir dos dados) de seus parâmetros críticos. Tal abordagem faz uso de um nova estratégia evolutiva concebida especialmente para tornar o C3E-SL mais prático e flexível, abrindo caminho para que variantes do algoritmo pudessem ser desenvolvidas. Em particular, para lidar com a escassez de dados rotulados, um novo algoritmo que realiza aprendizado semissupervisionado foi proposto. Seu mecanismo explora estruturas intrínsecas dos dados a partir do C3E-SL em um procedimento de autotreinamento (self-training). Esta noção também inspirou a concepção de um outro algoritmo baseado em aprendizado ativo (active learning), o qual é capaz de se autoadaptar para aprender novas classes que possam surgir durante a predição de novos dados. Uma extensa análise experimental, focada em problemas do mundo real, mostrou que os algoritmos propostos são bastante úteis e promissores. A combinação de classificadores e agrupadores resultou em modelos de classificação com grande potencial prático e que são menos dependentes do usuário ou do especialista de domínio. Os resultados alcançados foram tipicamente melhores em comparação com os obtidos por classificadores tradicionalmente usados. / Unsupervised learning models can provide a variety of supplementary constraints to improve the generalization capability of classifiers. Based on this assumption, an existing algorithm, named C3E (from Consensus between Classification and Clustering Ensembles), receives as inputs class probability distribution estimates for objects in a target set as well as a similarity matrix. Such a similarity matrix is typically built from clusterers induced on the target set, whereas the class probability distributions are obtained by an ensemble of classifiers induced from a training set. As a result, C3E provides refined estimates of the class probability distributions, from the consensus between classifiers and clusterers. The underlying idea is that similar new objects in the target set are more likely to share the same class label. In this thesis, a simpler version of the C3E algorithm, based on a Squared Loss function (C3E-SL), was investigated from an approach that enables the automatic estimation (from data) of its critical parameters. This approach uses a new evolutionary strategy designed to make C3E-SL more practical and flexible, making room for the development of variants of the algorithm. To address the scarcity of labeled data, a new algorithm that performs semi-supervised learning was proposed. Its mechanism exploits the intrinsic structure of the data by using the C3E-SL algorithm in a self-training procedure. Such a notion inspired the development of another algorithm based on active learning, which is able to self-adapt to learn new classes that may emerge when classifying new data. An extensive experimental analysis, focused on real-world problems, showed that the proposed algorithms are quite useful and promising. The combination of supervised and unsupervised learning yielded classifiers of great practical value and that are less dependent on user-defined parameters. The achieved results were typically better than those obtained by traditional classifiers.
255

Subsídios à operação de reservatórios baseada na previsão de variáveis hidrológicas

Bravo, Juan Martín January 2010 (has links)
Diversas atividades humanas são fortemente dependentes do clima e da sua variabilidade, especialmente aquelas relacionadas ao uso da água. A operação integrada de reservatórios com múltiplos usos requer uma série de decisões que definem quanta água deve ser alocada, ao longo do tempo para cada um dos usos, e quais os volumes dos reservatórios a serem mantidos. O conhecimento antecipado das condições climáticas resulta de vital importância para os operadores de reservatórios, pois o insumo dos reservatórios é a vazão dos rios, que por sua vez é dependente de condições atmosféricas e hidrológicas em diferentes escalas de tempo e espaço. A pesquisa trata sobre três importantes elementos de subsídio à tomada de decisão na operação de reservatórios baseada na previsão de variáveis hidrológicas: (a) as previsões de vazão de curto prazo; (b) as previsões de precipitação de longo prazo e (c) as medidas de desempenho das previsões. O reservatório de Furnas, localizado na bacia do Rio Grande, em Minas Gerais, foi selecionado como estudo de caso devido, principalmente, à disponibilidade de previsões quantitativas de chuva e pela importância desse reservatório na região analisada. A previsão de curto prazo de vazão com base na precipitação foi estimada com um modelo empírico (rede neural artificial) e a previsão de precipitação foi obtida pelo modelo regional ETA. Uma metodologia de treinamento e validação da rede neural artificial foi desenvolvida utilizando previsões perfeitas de chuva (considerando a chuva observada como previsão) e utilizando o maior número de dados disponíveis, favorecendo a representatividade dos resultados obtidos. A metodologia empírica alcançou os desempenhos obtidos com um modelo hidrológico conceitual, mostrando-se menos sensitiva aos erros na previsão quantitativa de precipitação nessa bacia. Os resultados obtidos mostraram que as previsões de vazão utilizando modelos empíricos e conceituais e incorporando previsões quantitativas de precipitação são melhores que a metodologia utilizada pelo ONS no local de estudo. A redução dos erros de previsão relativos à metodologia empregada pelo ONS foi em torno de 20% quando usadas previsões quantitativas de precipitação definidas pelo modelo regional ETA e superiores a 50% quando usadas previsões perfeitas de precipitação. Embora essas últimas previsões nunca possam ser obtidas na prática, os resultados sugerem o quanto o incremento do desempenho das previsões quantitativas de chuva melhoraria as previsões de vazão. A previsão de precipitação de longo prazo para a bacia analisada foi também estimada com um modelo empírico de redes neurais artificiais e utilizando índices climáticos como variáveis de entrada. Nesse sentido, foram estimadas previsões de precipitação acumulada no período mais chuvoso (DJF) utilizando índices climáticos associados a fenômenos climáticos, como o El Niño - Oscilação Sul e a Oscilação Decadal do Pacífico, e a modos de variabilidade climática, como a Oscilação do Atlântico Norte e o Modo Anular do Hemisfério Sul. Apesar das redes neurais artificiais terem sido aplicadas em diversos problemas relacionados a hidrometeorologia, a aplicação dessas técnicas na previsão de precipitação de longo prazo é ainda rara. Os resultados obtidos nesse trabalho mostraram que consideráveis reduções dos erros da previsão relativos ao uso apenas da média climatológica como previsão podem ser obtidos com a metodologia utilizada. Foram obtidas reduções dos erros de, no mínimo 50%, e chegando até um valor próximo a 75% nos diferentes testes efetuados no estudo de caso. Uma medida de desempenho da previsão foi desenvolvida baseada no uso de tabelas de contingência e levando em conta a utilidade da previsão. Essa medida de desempenho foi calculada com base nos resultados do uso das previsões por um modelo de operação de reservatório, e não apenas na comparação de vazões previstas e observadas. Nos testes realizados durante essa pesquisa, ficou evidente que não existe uma relação unívoca entre qualidade das previsões e utilidade das previsões. No entanto, em função de comportamentos particulares das previsões, tendências foram encontradas, como por exemplo nos modelos cuja previsão apresenta apenas defasagem. Nesses modelos, a utilidade das previsões tende a crescer na medida que a qualidade das mesmas aumenta. Por fim, uma das grandes virtudes da medida de desempenho desenvolvida nesse trabalho foi sua capacidade de distinguir o desempenho de modelos que apresentaram a mesma qualidade. / Several human activities are strongly dependent on climate and its variability, especially those related to water use. The operation of multi-purpose reservoirs systems defines how much water should be allocated and the reservoir storage volumes to be maintained, over time. Knowing in advance the weather conditions helps the decision making process, as the major inputs to reservoirs are the streamflows, which are dependent on atmospheric and hydrological conditions at different time-space scales. This research deals with three important aspects towards the decision making process of multi-purpose reservoir operation based on forecast of hydrological variables: (a) short-term streamflow forecast, (b) long-range precipitation forecast and (c) performance measures. The Furnas reservoir on the Rio Grande basin was selected as the case study, primarily because of the availability of quantitative precipitation forecasts from the Brazilian Center for Weather Prediction and Climate Studies and due to its importance in the Brazilian hydropower generation system. Short-term streamflow forecasts were estimated by an empirical model (artificial neural network – ANN) and incorporating forecast of rainfall. Quantitative precipitation forecasts (QPFs), defined by the ETA regional model, were used as inputs to the ANN models. A methodology for training and validating the ANN models was developed using perfect precipitation forecasts (i.e., using the observed precipitation as if it was a forecast) and considering the largest number of available samples, in order to increase the representativeness of the results. The empirical methodology achieved the performance obtained with a conceptual hydrological model and seemed to be less sensitive to precipitation forecast error relative to the conceptual hydrological model. Although limited to one reservoir, the results obtained show that streamflow forecasting using empirical and conceptual models and incorporating QPFs performs better than the methodology used by ONS. Reduction in the forecast errors relative to the ONS method was about 20% when using QPFs provided by ETA model, and greater than 50% when using the perfect precipitation forecast. Although the latter can never be achieved in practice, these results suggest that improving QPFs would lead to better forecasts of reservoir inflows. Long-range precipitation forecast was also estimated by an empirical model based on artificial neural networks and using climate indices as input variables. The output variable is the summer (DJF) precipitation over the Furnas watershed. It was estimated using climate indices related to climatic phenomena such as El Niño - Southern Oscillation and the Pacific Decadal Oscillation and modes of climate variability, such as the North Atlantic Oscillation and the Southern Annular Mode. Despite of ANN has been applied in several problems of hydrometeorological areas, the application of such technique for long-range precipitation forecast is still rare. The results obtained demonstrate how the methodology for seasonal precipitation forecast based on ANN can be particularly helpful, with the use of available time series of climate indices. Reductions in the forecast errors achieved by using only the climatological mean as forecast were considerable, being at least of 50% and reaching values close to 75% in several tests. A performance measure based on the use of contingency tables was developed taking into account the utility of the forecast. This performance measure was calculated based on the results of the use of the forecasts by a reservoir operation model, and not only by comparing streamflow observed and forecast. The performed tests show that there is no unequivocal relationship between quality and utility of the forecasts. However, when the forecast has a particular behavior, trends were found in the relationship between utility and quality of the forecast, such as models that generate streamflow forecast with lags in comparison to the observed values. In these models, the utility of the forecasts tends to enhance as the quality increases. Finally, the ability to distinguish the performance of forecast models having similar quality was one of the main merits of the performance measure developed in this research.
256

Algoritmos de agrupamento particionais baseados na Meta-heurística de otimização por busca em grupo

PACÍFICO, Luciano Demétrio Santos 26 August 2016 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2016-10-17T18:58:21Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese-ldsp-cin-ufpe.pdf: 2057113 bytes, checksum: 40e1baebc2bc4840cd9803fdc16d952f (MD5) / Made available in DSpace on 2016-10-17T18:58:21Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese-ldsp-cin-ufpe.pdf: 2057113 bytes, checksum: 40e1baebc2bc4840cd9803fdc16d952f (MD5) Previous issue date: 2016-08-26 / CNPQ / A Análise de Agrupamentos, também conhecida por Aprendizagem Não-Supervisionada, é uma técnica importante para a análise exploratória de dados, tendo sido largamente empregada em diversas aplicações, tais como mineração de dados, segmentação de imagens, bioinformática, dentre outras. A análise de agrupamentos visa a distribuição de um conjunto de dados em grupos, de modo que indivíduos em um mesmo grupo estejam mais proximamente relacionados (mais similares) entre si, enquanto indivíduos pertencentes a grupos diferentes tenham um alto grau de dissimilaridade entre si. Do ponto de vista de otimização, a análise de agrupamentos é considerada como um caso particular de problema de NP-Difícil, pertencendo à categoria da otimização combinatória. Técnicas tradicionais de agrupamento (como o algoritmo K-Means) podem sofrer algumas limitações na realização da tarefa de agrupamento, como a sensibilidade à inicialização do algoritmo, ou ainda a falta de mecanismos que auxiliem tais métodos a escaparem de pontos ótimos locais. Meta-heurísticas como Algoritmos Evolucionários (EAs) e métodos de Inteligência de Enxames (SI) são técnicas de busca global inspirados na natureza que têm tido crescente aplicação na solução de uma grande variedade de problemas difíceis, dada a capacidade de tais métodos em executar buscas minuciosas pelo espaço do problema, tentando evitar pontos de ótimos locais. Nas últimas décadas, EAs e SI têm sido aplicadas com sucesso ao problema de agrupamento de dados. Nesse contexto, a meta-heurística conhecida por Otimização por Busca em Grupo (GSO) vem sendo aplicada com sucesso na solução de problemas difíceis de otimização, obtendo desempenhos superiores a técnicas evolucionárias tradicionais, como os Algoritmos Genéticos (GA) e a Otimização por Enxame de Partículas (PSO). No contexto de análise de agrupamentos, EAs e SIs são capazes de oferecer boas soluções globais ao problema, porém, por sua natureza estocástica, essas abordagens podem ter taxas de convergência mais lentas quando comparadas a outros métodos de agrupamento. Nesta tese, o GSO é adaptado ao contexto de análise de agrupamentos particional. Modelos híbridos entre o GSO e o K-Means são apresentados, de modo a agregar o potencial de exploração oferecido pelas buscas globais do GSO à velocidade de exploitação de regiões locais oferecida pelo K-Means, fazendo com que os sistemas híbridos formados sejam capazes de oferecerem boas soluções aos problemas de agrupamento tratados. O trabalho apresenta um estudo da influência do K-Means quando usado como operador de busca local para a inicialização populacional do GSO, assim como operador para refinamento da melhor solução encontrada pela população do GSO durante o processo geracional desenvolvido por esta técnica. Uma versão cooperativa coevolucionária do modelo GSO também foi adaptada ao contexto da análise de agrupamentos particional, resultando em um método com grande potencial para o paralelismo, assim como para uso em aplicações de agrupamentos distribuídos. Os resultados experimentais, realizados tanto com bases de dados reais, quanto com o uso de conjuntos de dados sintéticos, apontam o potencial dos modelos alternativos de inicialização da população propostos para o GSO, assim como de sua versão cooperativa coevolucionária, ao lidar com problemas tradicionais de agrupamento de dados, como a sobreposição entre as classes do problema, classes desbalanceadas, dentre outros, quando em comparação com métodos de agrupamento existentes na literatura. / Cluster analysis, also known as unsupervised learning, is an important technique for exploratory data analysis, and it has being widely employed in many applications such as data mining, image segmentation, bioinformatics, and so on. Clustering aims to distribute a data set in groups, in such a way that individuals from the same group are more closely related (more similar) among each other, while individuals from different groups have a high degree of dissimilarity among each other. From an optimization perspective, clustering is considered as a particular kind of NP-hard problem, belonging in the combinatorial optimization category. Traditional clustering techniques (like K-Means algorithm) may suffer some limitations when dealing with clustering task, such as the sensibility to the algorithm initialization, or the lack of mechanisms to help these methods to escape from local minima points. Meta-heuristics such as EAs and SI methods are nature-inspired global search techniques which have been increasingly applied to solve a great variety of difficult problems, given their capability to perform thorough searches through a problem space, attempting to avoid local optimum points. From the past few decades, EAs and SI approaches have been successfully applied to tackle clustering problems. In this context, Group Search Optimization (GSO) meta-heuristic has been successfully applied to solve hard optimization problems, obtaining better performances than traditional evolutionary techniques, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). In clustering context, EAs an SIs are able to obtain good global solutions to the problem at hand, however, according to their stochastic nature, these approaches may have slow convergence rates in comparison to other clustering methods. In this thesis, GSO is adapted to the context of partitional clustering analysis. Hybrid models of GSO and K-Means are presented, in such a way that the exploration offered by GSO global searches are combined with fast exploitation of local regions provided by K-Means, generating new hybrid systems capable of obtaining good solutions to the clustering problems at hands. The work also presents a study on the influence of K-Means when adopted as a local search operator for GSO population initialization, just like its application as an refinement operator for the best solution found by GSO population during GSO generative process. A cooperative coevolutionary variant of GSO model is adapted to the context of partitional clustering, resulting in a method with great potential to parallelism, as much as for the use in distributed clustering applications. Experimental results, performed as with the use of real data sets, as with the use of synthetic data sets, showed the potential of proposed alternative population initialization models and the potential of GSO cooperative coevolutionary variant when dealing with classic clustering problems, such as data overlapping, data unbalancing, and so on, in comparison to other clustering algorithms from literature.
257

Aplicação de computação natural ao problema de estimação de direção de chegada / Application of natural computing to the problem of estimating the direction of arrival

Boccato, Levy, 1986- 07 December 2010 (has links)
Orientadores: Romis Ribeiro de Faissol Attux, Amauri Lopes / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-16T06:42:29Z (GMT). No. of bitstreams: 1 Boccato_Levy_M.pdf: 4045423 bytes, checksum: 1d40c6a25139b336b0f908ad27ab3522 (MD5) Previous issue date: 2010 / Resumo: O problema de estimação de direção de chegada (DOA, em inglês direction of arrival ) de ondas planas que incidem sobre um arranjo linear uniforme de sensores, através do critério da máxima verossimilhança (ML, em inglês maximum likelihood), requer a minimização de uma função custo não-linear, não-quadrática, multimodal e variante com a relação sinal-ruído (SNR, em inglês signal-to-noise ratio). Esta dissertação trata da aplicação de algoritmos de computação natural como alternativa ao uso de métodos clássicos, como o MODE e o MODEX, os quais não são capazes de alcançar o desempenho do estimador ML em uma ampla faixa de valores de SNR. As simulações realizadas em diferentes cenários indicam que alguns dos algoritmos analisados conseguem estimar os ângulos de chegada adequadamente. Por fim, inspirados em uma proposta de filtragem de ruído dos dados recebidos, elaboramos uma maneira de realizar a amostragem no espaço de soluções candidatas: a resposta em frequência do filtro que produz a maior atenuação de ruído é empregada como função densidade de probabilidade no processo de amostragem. Os resultados obtidos atestam que este procedimento tende a aumentar a eficiência dos algoritmos estudados na estimação DOA / Abstract: The problem of estimating the direction of arrival (DOA) of plane waves impinging on a uniform linear array of sensors, through the maximum likelihood (ML) criterion, requires the minimization of a cost function that is non-linear, non-quadratic, multimodal and variant with the signal-to-noise ratio (SNR). This work deals with the application of natural computing algorithms as an alternative to the use of classical methods, such as MODE and MODEX, which are not capable of achieving the performance of the ML estimator in a wide range of SNR values. The simulations performed in different scenarios indicate that some of the studied algorithms can adequately estimate the angles of arrival. Finally, inspired by a proposal of noise filtering of the received data, we designed a procedure of sampling the search space: the frequency response of the filter which produces the maximal noise reduction is employed as the probability density function during the sampling process. The obtained results attest that this procedure tends to increase the efficiency of the considered algorithms in DOA estimation / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
258

Boclusterização na análise de dados incertos / Biclustering on uncertais data analysis

França, Fabricio Olivetti de 17 August 2018 (has links)
Orientador: Fernando Jose Von Zuben / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-17T09:17:50Z (GMT). No. of bitstreams: 1 Franca_FabricioOlivettide_D.pdf: 3983253 bytes, checksum: 6b0d30018574ad5a6e0cce05c34606b8 (MD5) Previous issue date: 2010 / Resumo: O processo de aquisição de dados está sujeito a muitas fontes de incerteza e inconsistência. Essas incertezas podem fazer com que os dados se tornem ruidosos ou impedir a aquisição dos mesmos, gerando o problema de dados faltantes. A maioria das ferramentas utilizadas para tratar tais problemas age de forma global em relação às informações da base de dados e ignora o efeito que o ruído pode ter na análise desses. Esta tese tem como objetivo explorar as propriedades do processo de biclusterização, que faz uma análise local dos dados, criando múltiplos modelos de imputação de dados que buscam minimizar o erro de predição dos valores faltantes na base de dados. Primeiramente, é proposto um novo algoritmo de biclusterização com um melhor desempenho que outras abordagens utilizadas atualmente, enfatizando a capacidade dos biclusters em gerar modelos com ruído reduzido. Em seguida, é proposta uma formulação de otimização quadrática para, utilizando os modelos locais gerados pelo bicluster, imputar os valores faltantes na base de dados. Os resultados obtidos indicam que a utilização da biclusterização ajuda a reduzir o erro de predição da imputação, além de fornecer condições favoráveis a uma análise a posteriori das informações contidas nos dados / Abstract: The data acquisition process is subject to many inconsistencies and uncertainties. These uncertainties may produce noisy data or even provoke the absence of some of them, thus leading to the missing data problem. Most procedures used to deal with such problem act in a global manner, relatively to the dataset, and ignore the noise e_ect on such analysis. The objective of this thesis is to explore the properties of the so called biclustering method, which performs a local data analysis, creating several imputation models for the dataset in order to minimize the prediction error estimating missing values of the dataset. First, it is proposed a new biclustering algorithm with a better performance than the one produced by other traditional approaches, with emphasis on the noise reduction capability of the models generated by the biclusters. Next, it is proposed the formulation of a quadratic optimization problem to impute the missing data by means of the local models engendered by a set of biclusters. The obtained results show that the use of biclustering helps to reduce the prediction error of data imputation, besides providing some interesting conditions for an a posteriori analysis of the dataset / Doutorado / Engenharia de Computação / Doutor em Engenharia Elétrica
259

Otimização baseada em confiabilidade de planos de manutenção de sistemas de distribuição de energia eletrica / Reliability based optimization of maintenance schedules for electric power distribution systems

Reis, Paulo Alexandre 13 August 2018 (has links)
Orientadores: Christiano Lyra Filho, Celso Cavellucci / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-13T03:27:30Z (GMT). No. of bitstreams: 1 Reis_PauloAlexandre_M.pdf: 462293 bytes, checksum: 3e3ba986f1d06695ded61d98139be232 (MD5) Previous issue date: 2007 / Resumo: Abordagens tradicionais de manutenção de sistemas de distribuição de energia elétrica se baseiam em ações realizadas periodicamente, ou programadas, de acordo com uma análise de necessidades e prioridades após inspeções. Embora essas abordagens tenham o objetivo de melhorar a confiabilidade dos sistemas, geralmente não há uma avaliação precisa do impacto das ações de manutenção na confiabilidade dos mesmos. O planejamento de manutenções pode ser realizado sob a perspectiva da confiabilidade com abordagens recentes chamadas RCM (reliability centered maintenance - manutenção baseada em confiabilidade). Essas abordagens procuram estabelecer uma ligação rigorosa entre manutenção e confiabilidade. Este trabalho propõe uma abordagem de manutenção baseada em confiabilidade com a perspectiva de encontrar as melhores estratégias para manutenções de redes de distribuição de energia elétrica; apresenta um modelo matemático e metodologia de otimização para encontrar as melhores estratégias de manutenções em um determinado horizonte de estudo. O problema formulado caracteriza-se como um problema de otimização combinatória com o objetivo de encontrar as ações de manutenção que minimizem os recursos utilizados em manutenções preventivas e corretivas, garantindo um nível de confiabilidade desejado para o sistema. O trabalho desenvolve duas alternativas para solução do problema: a primeira abordagem foi construída a partir do método GRASP (greedy randomized adaptive search procedure); a segunda abordagem é um método de computação evolutiva com busca local. Estudos de casos em redes de porte real avaliam as duas alternativas de solução. Os resultados realçam aspectos significativos da abordagem desenvolvida. / Abstract: Traditional approaches to electric power distribution systems maintenance are based on activities performed at regular intervals, or scheduled after analysis of needs end priorities identified after inspections. Although these maintenances activities are carried out to improve reliability, usually such approaches do not explicitly consider the impact of maintenance activities on reliability. Maintenance planning can be guided by reliability with recent approaches known as RCM (reliability centered maintenance). A RCM approach tries to establish a rigorous link between maintenance and reliability. This work proposes a reliability centered maintenance approach to unveil the best maintenance schedule for electric power distribution networks; it presents a mathematical model and optimization methods to find the best maintenance schedule along a given planning horizon. The problem is formulated as a combinatorial optimization problem with the objective of finding the maintenance activities that minimize the resources allocated to preventive and corrective maintenance, making sure the system meets a reliability target. The work proposes two heuristic methods to solve the problem: the first one is a GRASP method (Greedy Randomized Adaptive Search Procedure); the other one is an evolutionary computation method with local search. Realistic case studies are used to evaluate both methods. The results highlight meaningful aspects of the proposed approaches. / Mestrado / Automação / Mestre em Engenharia Elétrica
260

Calibração de modelos de drenagem urbana utilizando algoritmos evolucionários multiobjetivo / Calibration models; multiobjective optimization; evolutionary algorithms;urban drainage

CARVALHO, Maíra de 29 August 2011 (has links)
Made available in DSpace on 2014-07-29T15:01:46Z (GMT). No. of bitstreams: 1 Dissertacao_Maira de Carvalho.pdf: 846890 bytes, checksum: 1b876a63defdf3d8fc33aa92bba455c5 (MD5) Previous issue date: 2011-08-29 / CARVALHO, M. Calibration models of urban drainage using multiobjective evolutionary algorithms. 2011. Dissertation (Masters of Environmental Engineering) - Civil Engineering College, Post-Graduation Stricto Sensu Program in Environmental Engineering - Federal University of Goiás, Goiânia, Goiás, Brazil, 2011.. This study proposed to develop and implement a calibration routine hydrological models applied to urban drainage using multiobjective optimization techniques. To make this work possible model was adopted Storm Water Management Model (SWMM) and the computational algorithms developed in MATLAB environment using an evolutionary algorithm. The method was applied to two different levels of detail in representing the Arroyo Cancels basin, located in the urban area of Santa Maria-RS, submitted to the hydrological processes involved in the process of rainfall-runoff transformation in the search for optimal values of hydrological parameters the basin. Objective functions were defined and applied simultaneously in the calibration parameters. Worked with the simulation of events of low and high intensity settings for two discretization of the watershed, and other simple and subdivided into 18 sub-basins. The sensitivity analysis performed made it possible to check that the parameters that most influenced the basin were simple: Percentage of impervious area and outlet width. Regarding the results for the various watershed discretization can be seen that in most cases when working with a more detailed watershed they were better, except for some isolated events. Overall the model showed better results when high-intensity simulated events for the best compromise solutions, thus showing the importance of using a multiobjective model. / CARVALHO, M. Calibração de modelos de drenagem urbana utilizando algoritmos evolucionários multiobjetivo. 2011. Dissertação (Mestrado em Engenharia do Meio Ambiente) Escola de Engenharia Civil, Programa de Pós-Graduação Stricto Sensu em Engenharia do Meio Ambiente, Universidade Federal de Goiás, Goiânia, 2011. O presente trabalho propôs desenvolver e aplicar uma rotina de calibração de modelos hidrológicos aplicados a drenagem urbana empregando técnicas de otimização multiobjetivo. Para tornar possível a realização deste trabalho foi adotado o modelo Storm Water Management Model (SWMM) e as rotinas computacionais desenvolvidas em ambiente MATLAB, utilizando um algoritmo evolucionário. O método foi aplicado a dois diferentes níveis de detalhamento na representação da bacia do Arroio Cancela, localizada na zona urbana do município de Santa Maria-RS, na busca de valores ótimos de parâmetros hidrológicos da bacia. Foram definidas funções objetivo e aplicadas simultaneamente na calibração de parâmetros. Trabalhou-se com a simulação de eventos de baixa e alta intensidade para duas configurações de bacia hidrográfica, sendo simples e outra subdividida em 18 sub-bacias. A análise de sensibilidade realizada possibilitou a verificação de que os parâmetros que mais influenciaram na bacia simples foram: Porcentagem de área impermeável e Largura do escoamento. Em relação aos resultados para as diferentes configurações de discretização da bacia hidrográfica pode-se verificar que na maioria dos casos quando se trabalhou com uma bacia mais detalhada estes foram melhores, salvo alguns eventos isolados. No geral o modelo apresentou melhores resultados quando simulou eventos de alta intensidade para as soluções de melhor compromisso, assim mostrando a importância da utilização de um modelo multiobjetivo.

Page generated in 0.1226 seconds