301 |
Optimisation évolutionnaire multi-objectif parallèle : application à la combustion Diesel / Multi-objective parallel evolutionary algorithms : Application to Diesel CombustionYagoubi, Mouadh 03 July 2012 (has links)
Avec la sévérisation des réglementations environnementales sur les émissions polluantes (normes Euro) des moteurs d'automobiles, la nécessité de maitriser les phénomènes de combustion a motivé le développement de la simulation numérique comme outil d'aide à la conception. Tenant compte de la complexité des phénomènes à modéliser, et de l'antagonisme des objectifs à optimiser, l'optimisation évolutionnaire multi-objectif semble être la mieux adaptée pour résoudre ce type de problèmes. Cependant, l'inconvénient principal de cette approche reste le coût très élevé en termes de nombre d'évaluations qui peut devenir très contraignant dans le contexte des optimisations réelles caractérisées par des évaluations très coûteuseL'objectif principal de ce travail de thèse est de réduire le coût global des optimisations du monde réel, en explorant la parallélisation des algorithmes évolutionnaires multi-objectifs, et en utilisant les techniques de réduction du nombre d'évaluations (méta-modèles).Motivés par le phénomène d'hétérogénéité des coûts des évaluations, nous nous proposons d'étudier les schémas d'évolution stationnaires asynchrones dans une configuration parallèle de type « maître-esclave ». Ces schémas permettent une utilisation plus efficace des processeurs sur la grille de calcul, et par conséquent de réduire le coût global de l'optimisation.Ce problème a été attaqué dans un premier temps d'un point de vue algorithmique, à travers une adaptation artificielle des algorithmes évolutionnaires multi-objectifs au contexte des optimisations réelles caractérisées par un coût d'évaluation hétérogène. Dans un deuxième temps, les approches développées et validées dans la première partie sur des problèmes analytiques, ont été appliquées sur la problématique de la combustion Diesel qui représente le contexte industriel de cette thèse. Dans ce cadre, deux types de modélisations ont été utilisés: la modélisation phénoménologique 0D et la modélisation multidimensionnelle 3D. La modélisation 0D a permis par son temps de retour raisonnable (quelques heures par évaluation) de comparer l'approche stationnaire asynchrone avec celle de l'état de l'art en réalisant deux optimisations distinctes. Un gain de l'ordre de 42 % a été réalisé avec l'approche stationnaire asynchrone. Compte tenu du temps de retour très coûteux de la modélisation complète 3D (quelques jours par évaluation), l'approche asynchrone stationnaire déjà validée a été directement appliquée. L'analyse physique des résultats a permis de dégager un concept intéressant de bol de combustion permettant de réaliser un gain en termes d'émissions polluantes. / In order to comply with environmental regulations, automotive manufacturers have to develop efficient engines with low fuel consumption and low emissions. Thus, development of engine combustion systems (chamber, injector, air loop) becomes a hard task since many parameters have to be defined in order to optimize many objectives in conflict. Evolutionary Multi-objective optimization algorithms (EMOAs) represent an efficient tool to explore the search space and find promising engine combustion systems. Unfortunately, the main drawback of Evolutionary Algorithms (EAs) in general, and EMOAs in particular, is their high cost in terms of number of function evaluations required to reach a satisfactory solution. And this drawback can become prohibitive for those real-world problems where the computation of the objectives is made through heavy numerical simulations that can take hours or even days to complete.The main objective of this work is to reduce the global cost of real-world optimization, using the parallelization of EMOAs and surrogate models.Motivated by the heterogeneity of the evaluation costs observed on real-world applications, we study asynchronous steady-state selection schemes in a master-slave parallel configuration. This approach allows an efficient use of the available processors on the grid computing system, and consequently reduces the global optimization cost.In the first part of this work, this problem has been studied in an algorithmical point of view, through an artificial adaptation of EMOAs to the context of real-world optimizations characterized by a heterogeneous evaluation cost.In the second part, the proposed approaches, already validated on analytical functions, have been applied on the Diesel combustion problem, which represents the industrial context of this thesis. Two modelling approaches have been used: phenomenological modelling (0D model) and multi-dimensional modelling (3D model).The 0D model allowed us, thanks to its reasonable evaluation cost (few hours per evaluation) to compare the asynchronous steady-state approach with the standard generational one by performing two distinct optimizations. A gain of 42 % was observed with the asynchronous steady-state approach.Given the very high evaluation cost of the full 3D model, the asynchronous steady-state approach already validated has been applied directly. The physical analysis of results allowed us to identify an interesting concept of combustion bowl with a gain in terms of pollutant emissions.
|
302 |
Surrogate-Assisted Evolutionary Algorithms / Les algorithmes évolutionnaires à la base de méta-modèles scalairesLoshchilov, Ilya 08 January 2013 (has links)
Les Algorithmes Évolutionnaires (AEs) ont été très étudiés en raison de leur capacité à résoudre des problèmes d'optimisation complexes en utilisant des opérateurs de variation adaptés à des problèmes spécifiques. Une recherche dirigée par une population de solutions offre une bonne robustesse par rapport à un bruit modéré et la multi-modalité de la fonction optimisée, contrairement à d'autres méthodes d'optimisation classiques telles que les méthodes de quasi-Newton. La principale limitation de AEs, le grand nombre d'évaluations de la fonction objectif,pénalise toutefois l'usage des AEs pour l'optimisation de fonctions chères en temps calcul.La présente thèse se concentre sur un algorithme évolutionnaire, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), connu comme un algorithme puissant pour l'optimisation continue boîte noire. Nous présentons l'état de l'art des algorithmes, dérivés de CMA-ES, pour résoudre les problèmes d'optimisation mono- et multi-objectifs dans le scénario boîte noire.Une première contribution, visant l'optimisation de fonctions coûteuses, concerne l'approximation scalaire de la fonction objectif. Le meta-modèle appris respecte l'ordre des solutions (induit par la valeur de la fonction objectif pour ces solutions); il est ainsi invariant par transformation monotone de la fonction objectif. L'algorithme ainsi défini, saACM-ES, intègre étroitement l'optimisation réalisée par CMA-ES et l'apprentissage statistique de meta-modèles adaptatifs; en particulier les meta-modèles reposent sur la matrice de covariance adaptée par CMA-ES. saACM-ES préserve ainsi les deux propriété clé d'invariance de CMA-ES: invariance i) par rapport aux transformations monotones de la fonction objectif; et ii) par rapport aux transformations orthogonales de l'espace de recherche.L'approche est étendue au cadre de l'optimisation multi-objectifs, en proposant deux types de meta-modèles (scalaires). La première repose sur la caractérisation du front de Pareto courant (utilisant une variante mixte de One Class Support Vector Machone (SVM) pour les points dominés et de Regression SVM pour les points non-dominés). La seconde repose sur l'apprentissage d'ordre des solutions (rang de Pareto) des solutions. Ces deux approches sont intégrées à CMA-ES pour l'optimisation multi-objectif (MO-CMA-ES) et nous discutons quelques aspects de l'exploitation de meta-modèles dans le contexte de l'optimisation multi-objectif.Une seconde contribution concerne la conception d'algorithmes nouveaux pour l'optimi\-sation mono-objectif, multi-objectifs et multi-modale, développés pour comprendre, explorer et élargir les frontières du domaine des algorithmes évolutionnaires et CMA-ES en particulier. Spécifiquement, l'adaptation du système de coordonnées proposée par CMA-ES est coupléeà une méthode adaptative de descente coordonnée par coordonnée. Une stratégie adaptative de redémarrage de CMA-ES est proposée pour l'optimisation multi-modale. Enfin, des stratégies de sélection adaptées aux cas de l'optimisation multi-objectifs et remédiant aux difficultés rencontrées par MO-CMA-ES sont proposées. / Evolutionary Algorithms (EAs) have received a lot of attention regarding their potential to solve complex optimization problems using problem-specific variation operators. A search directed by a population of candidate solutions is quite robust with respect to a moderate noise and multi-modality of the optimized function, in contrast to some classical optimization methods such as quasi-Newton methods. The main limitation of EAs, the large number of function evaluations required, prevents from using EAs on computationally expensive problems, where one evaluation takes much longer than 1 second.The present thesis focuses on an evolutionary algorithm, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which has become a standard powerful tool for continuous black-box optimization. We present several state-of-the-art algorithms, derived from CMA-ES, for solving single- and multi-objective black-box optimization problems.First, in order to deal with expensive optimization, we propose to use comparison-based surrogate (approximation) models of the optimized function, which do not exploit function values of candidate solutions, but only their quality-based ranking.The resulting self-adaptive surrogate-assisted CMA-ES represents a tight coupling of statistical machine learning and CMA-ES, where a surrogate model is build, taking advantage of the function topology given by the covariance matrix adapted by CMA-ES. This allows to preserve two key invariance properties of CMA-ES: invariance with respect to i). monotonous transformation of the function, and ii). orthogonal transformation of the search space. For multi-objective optimization we propose two mono-surrogate approaches: i). a mixed variant of One Class Support Vector Machine (SVM) for dominated points and Regression SVM for non-dominated points; ii). Ranking SVM for preference learning of candidate solutions in the multi-objective space. We further integrate these two approaches into multi-objective CMA-ES (MO-CMA-ES) and discuss aspects of surrogate-model exploitation.Second, we introduce and discuss various algorithms, developed to understand, explore and expand frontiers of the Evolutionary Computation domain, and CMA-ES in particular. We introduce linear time Adaptive Coordinate Descent method for non-linear optimization, which inherits a CMA-like procedure of adaptation of an appropriate coordinate system without losing the initial simplicity of Coordinate Descent.For multi-modal optimization we propose to adaptively select the most suitable regime of restarts of CMA-ES and introduce corresponding alternative restart strategies.For multi-objective optimization we analyze case studies, where original parent selection procedures of MO-CMA-ES are inefficient, and introduce reward-based parent selection strategies, focused on a comparative success of generated solutions.
|
303 |
Studium a srovnávání hlavních typů evolučních algoritmů / Study and comparison of main kinds of evolutionary algorithmsŠtefan, Martin January 2012 (has links)
Evolutionary algorithms belongs among the youngest and the most progressive methods of solving difficult optimization tasks. They received huge popularity mainly due to good experimental results in optimization, a simplicity of the implementation and a high modularity, which is an ability to be modified for different problems. Among the most frequently used Evolutionary algorithms belongs Genetic Algorithm, Differential Evolution and Evolutionary Strategy. It is able to apply these algorithms and theirs variants to both continuous, discrete and mixed optimization tasks. A subject of this theses is to compare three main types of algorithms on the catalyst optimization task with mixed variables, linear constraints and experimentally evaluated fitness function.
|
304 |
Traitement de la mission et des variables environnementales et intégration au processus de conception systémique / Treatment of the mission and environmental variables and integration in the system design processJaafar, Amine 28 September 2011 (has links)
Ce travail présente une démarche méthodologique visant le «traitement de profils» de «mission» et plus généralement de «variables environnementales» (mission, gisement, conditions aux limites), démarche constituant la phase amont essentielle d’un processus de conception systémique. La «classification» et la «synthèse» des profils relatifs aux variables d’environnement du système constituent en effet une première étape inévitable permettant de garantir, dans une large mesure, la qualité du dispositif conçu et ce à condition de se baser sur des «indicateurs» pertinents au sens des critères et contraintes de conception. Cette approche s’inscrit donc comme un outil d’aide à la décision dans un contexte de conception systémique. Nous mettons en particulier l’accent dans cette thèse sur l’apport de notre approche dans le contexte de la conception par optimisation qui, nécessitant un grand nombre d’itérations (évaluation de solutions de conception), exige l’utilisation de «profils compacts» au niveau informationnel (temps, fréquence,…). Nous proposons dans une première phase d’étude, une démarche de «classification» et de «segmentation» des profils basée sur des critères de partitionnement. Cette étape permet de guider le concepteur vers le choix du nombre de dispositifs à concevoir pour sectionner les produits créés dans une gamme. Dans une deuxième phase d’étude, nous proposons un processus de «synthèse de profil compact», représentatif des données relatives aux variables environnementales étudiées et dont les indicateurs de caractérisation correspondent aux caractéristiques de référence des données réelles. Ce signal de durée réduite est obtenu par la résolution d’un problème inverse à l’aide d’un algorithme évolutionnaire en agrégeant des motifs élémentaires paramétrés (sinusoïde, segments, sinus cardinaux). Ce processus de «synthèse compacte» est appliqué ensuite sur des exemples de profils de missions ferroviaires puis sur des gisements éoliens (vitesse du vent) associés à la conception de chaînes éoliennes. Nous prouvons enfin que la démarche de synthèse de profil représentatif et compact accroît notablement l’efficacité de l’optimisation en minimisant le coût de calcul facilitant dès lors une approche de conception par optimisation. / This work presents a methodological approach aiming at analyzing and processing mission profiles and more generally environmental variables (e.g. solar or wind energy potential, temperature, boundary conditions) in the context of system design. This process constitutes a key issue in order to ensure system effectiveness with regards to design constraints and objectives. In this thesis, we pay a particular attention on the use of compact profiles for environmental variables in the frame of system level integrated optimal design, which requires a wide number of system simulations. In a first part, we propose a clustering approach based on partition criteria with the aim of analyzing mission profiles. This phase can help designers to identify different system configurations in compliance with the corresponding clusters: it may guide suppliers towards “market segmentation” not only fulfilling economic constraints but also technical design objectives. The second stage of the study proposes a synthesis process of a compact profile which represents the corresponding data of the studied environmental variable. This compact profile is generated by combining parameters and number of elementary patterns (segment, sine or cardinal sine) with regards to design indicators. These latter are established with respect to the main objectives and constraints associated to the designed system. All pattern parameters are obtained by solving the corresponding inverse problem with evolutionary algorithms. Finally, this synthesis process is applied to two different case studies. The first consists in the simplification of wind data issued from measurements in two geographic sites of Guadeloupe and Tunisia. The second case deals with the reduction of a set of railway mission profiles relative to a hybrid locomotive devoted to shunting and switching missions. It is shown from those examples that our approach leads to a wide reduction of the profiles associated with environmental variables which allows a significant decrease of the computational time in the context of an integrated optimal design process.
|
305 |
Un système d’aide à la régulation d’un réseau de transport multimodal perturbé : réponse au problème de congestion / A support system for the regulation of a multimodal transportation network disruption : response to the problem of congestionMejri, Hinda 22 June 2012 (has links)
Les réseaux de transport se sont amplifiés par l’accroissement du nombre des véhicules et des stations ainsi que l’apparition de nouvelles notions essentiellement la multimodalité et l’intermodalité. Ainsi, la tâche de gestion des réseaux de transport collectif est devenue très complexe et difficile pour les régulateurs. Pour faire face à ces difficultés, on note le développement des systèmes d’aide à la décision comme solution efficace de régulation de la circulation. Ils permettent de transmettre en temps réel les informations concernant le trafic sur les réseaux de transport.Notre travail se base sur la conception d’un système de régulation des réseaux de transport multimodal. Il peut se révéler comme un outil primordial pour apporter des solutions efficaces et en temps réel à la problématique de la congestion routière. Il peut communiquer l’information nécessaire à l’usager afin de prendre sa décision de déplacement avec ou sans sa voiture. Le système proposé est une approche hybride entre une modélisation par graphes du réseau et un système multi-agents. Ceci sera appuyé par une approche évolutionniste pour la génération d’une solution de régulation optimale. Ce choix est justifié par le caractère ouvert, distribué et complexe des réseaux de transport multimodal / Transport networks have been amplified by the increasing number of vehicles and stations and the emergence of new concepts essentially multimodal and intermodal. Thus, the task of managing public transport systems has become very complex and difficult for regulators.To cope with these difficulties, there is the development of systems decision support as an effective solution to traffic control. They can transmit real-time traffic information on transport networks. Our work is based on designing a control system of multimodal transport networks. It may be as an essential tool for effective solutions and real-time to the problem of traffic congestion. It can provide the necessary information to the user in making its decision to move with or without his car. The proposed system is a hybrid between a graph modeling the network and a multi-agent system. This will be supported by an evolutionary approach for generating an optimal control solution. This is justified by the open, distributed and complex network of multimodal transport
|
306 |
Algoritmo evolutivo multiobjetivo em tabelas e matriz HΔ para projeto de sistemas de medição para estimação de estado / Multi-objective evolutionary algorithm in tables and HΔ matrix for metering system planning for state estimationVigliassi, Marcos Paulo 22 March 2017 (has links)
O problema de projeto de sistemas de medição, para efeito de Estimação de Estado em Sistemas Elétricos de Potência, é um problema de otimização multiobjetivo, combinatório, que exige a investigação de um grande número de possíveis soluções. Dessa forma, metaheurísticas vêm sendo empregadas para sua solução. Entretanto, a maioria delas trata o problema de forma mono-objetivo e as poucas que consideram uma formulação multiobjetivo, não contemplam todos os requisitos de desempenho que devem ser atendidos para obtenção de um Sistema de Medição Confiável (SMC) (observabilidade e ausência de Medidas Críticas, Conjuntos Críticos de Medidas, Unidades Terminais Remotas Críticas e Unidades de Medição Fasoriais Críticas). Propõe-se, nesta tese, uma formulação multiobjetivo para o problema de projeto de sistemas de medição de uma forma mais ampla, considerando todas requisitos de desempenho que devem ser atendidos para obtenção de um SMC. Propõe-se, ainda, o desenvolvimento e implantação, em computador, de um método para tratamento desse problema, considerando o trade-off entre os requisitos de desempenho e o custo, fazendo uso do conceito de Fronteira de Pareto. O método possibilita, em uma única execução, a obtenção de quatro tipos de sistemas de medição, a partir da análise de soluções não dominadas. O método permite o projeto de sistemas de medição novos e o aprimoramento de sistemas de medição já existentes, considerando a existência apenas de medidas convencionais SCADA, apenas de Medidas Fasoriais Sincronizadas ou a existência dos dois tipos de medidas. O método proposto faz uso de um Algoritmo Evolutivo Multiobjetivo e do procedimento de obtenção e análise da matriz HΔ. Esse procedimento permite a realização de uma Busca Local, minimizando o custo para atendimento de cada um dos requisitos de desempenho mencionados acima. Simulações são realizadas utilizando dados dos sistemas de 6, 14, 30, 118 e 300 barras do IEEE, bem como do sistema de 61 barras da Eletropaulo, de forma a ilustrar, testar e validar o método proposto. Alguns dos resultados dessas simulações são comparados com resultados obtidos por outros métodos encontrados na literatura. / Metering system planning for power system state estimation is a multi-objective, combinatorial optimization problem that may require the investigation of many possible solutions. As a consequence, meta-heuristics have been employed to solve the problem. However in the majority of them the multi-objective problem is converted in a mono-objective problem and those few considering a multi-objective formulation do not consider all the performance requirements that must be attended in order to obtain a Reliable Metering System (RMS) (system observability and absence of Critical Measurements, Critical Sets, Critical Remote Terminal Units and Critical Phasor Measurement Units). This thesis proposes a multi-objective formulation for the metering system planning problem in a wide way, that is, considering all the performance requirements that must be attended to obtain a RMS. This thesis also proposes the development and implementation, in computer, of a method to solve the metering system planning problem, considering the trade-off between the two conflicting objectives of the problem (minimizing cost while maximizing the performance requirements) making use of the concept of Pareto Frontier. The method allows, in only one execution, the project of four types of metering systems, from the analysis of non-dominated solutions. The method enable the design of new metering systems as well as the improvement of existing ones, considering the existence of only conventional SCADA measurements, or only synchronized phasor measurements or the existence of both types of measurements. The proposed method combines a multi-objective evolutionary algorithm based on subpopulation tables with the properties of the so-called HΔ matrix. The subpopulations tables adequately model several metering system performance requirements enabling a better exploration of the solution space. On the other hand, the properties of the HΔ matrix enable a local search that improves the evolutionary process and minimizes the computational effort. Simulations results with IEEE 6, 14, 30, 118 and 300-bus test systems and with a 61-bus system of Eletropaulo illustrate the efficiency of the proposed method. Some of the results of these simulations will be compared with those published in literature.
|
307 |
A Framework for Autonomous Generation of Strategies in Satisfiability Modulo Theories / Un cadre pour la génération autonome de stratégies dans la satisfiabilité modulo des théoriesGalvez Ramirez, Nicolas 19 December 2018 (has links)
La génération de stratégies pour les solveurs en Satisfiabilité Modulo des Théories (SMT) nécessite des outils théoriques et pratiques qui permettent aux utilisateurs d’exercer un contrôle stratégique sur les aspects heuristiques fondamentaux des solveurs de SMT, tout en garantissant leur performance. Nous nous intéressons dans cette thèse au solveur Z3 , l’un des plus efficaces lors des compétitions SMT (SMT-COMP). Dans les solveurs SMT, la définition d’une stratégie repose sur un ensemble de composants et paramètres pouvant être agencés et configurés afin de guider la recherche d’une preuve de (in)satisfiabilité d’une instance donnée. Dans cette thèse, nous abordons ce défi en définissant un cadre pour la génération autonome de stratégies pour Z3, c’est-à-dire un algorithme qui permet de construire automatiquement des stratégies sans faire appel à des connaissances d’expertes. Ce cadre général utilise une approche évolutionnaire (programmation génétique), incluant un système à base de règles. Ces règles formalisent la modification de stratégies par des principes de réécriture, les algorithmes évolutionnaires servant de moteur pour les appliquer. Cette couche intermédiaire permettra d’appliquer n’importe quel algorithme ou opérateur sans qu’il soit nécessaire de modifier sa structure, afin d’introduire de nouvelles informations sur les stratégies. Des expérimentations sont menées sur les jeux classiques de la compétition SMT-COMP. / The Strategy Challenge in Satisfiability Modulo Theories (SMT) claims to build theoretical and practical tools allowing users to exert strategic control over core heuristic aspects of high-performance SMT solvers. In this work, we focus in Z3 Theorem Prover: one of the most efficient SMT solver according to the SMT Competition, SMT-COMP. In SMT solvers, the definition of a strategy relies on a set of tools that can be scheduled and configured in order to guide the search for a (un)satisfiability proof of a given instance. In this thesis, we address the Strategy Challenge in SMT defining a framework for the autonomous generation of strategies in Z3, i.e. a practical system to automatically generate SMT strategies without the use of expert knowledge. This framework is applied through an incremental evolutionary approach starting from basic algorithms to more complex genetic constructions. This framework formalise strategies modification as rewriting rules, where algorithms acts as enginess to apply them. This intermediate layer, will allow apply any algorithm or operator with no need to being structurally modified, in order to introduce new information in strategies. Validation is done through experiments on classic benchmarks of the SMT-COMP.
|
308 |
[en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT / [pt] SISTEMA INTELIGENTE DE OTIMIZAÇÃO DE ALTERNATIVAS DE DESENVOLVIMENTO DE CAMPOS PETROLÍFEROSYVAN JESUS TUPAC VALDIVIA 15 June 2005 (has links)
[pt] Este trabalho investiga o problema de otimização de
alternativas para o
desenvolvimento de campos petrolíferos. Uma alternativa de
desenvolvimento
refere-se à forma como um campo petrolífero, conhecido e
delimitado, é colocado
em produção, isto é, diz respeito à determinação do número,
localização e
agendamento dos poços de produção e injeção. Otimização de
alternativas
consiste em encontrar as configurações de produção que, a
longo prazo, forneçam
o maior valor presente líquido (VPL), obtido a partir do
custo de investimento
inicial, do preço do petróleo, da produção de óleo e gás,
dos custos de operação,
das alíquotas de impostos e dos royalties pagos durante o
tempo de produção. A
produção de óleo é obtida usando-se um simulador de
reservatório. O simulador
recebe a informação da alternativa a ser simulada e retorna
a curva de produção de
óleo e gás no tempo de produção especificado. Cada execução
do simulador pode
demorar desde alguns segundos até várias horas, dependendo
da complexidade do
reservatório modelado. Este trabalho propõe, implementa e
avalia um sistema
inteligente de otimização que emprega: algoritmos genéticos
(AGs) para a busca
de uma alternativa de desenvolvimento ótima; uso de
ambiente de computação
paralela para a simulação de reservatório e cálculo do VPL
das alternativas; um
módulo de inferência baseado em modelos inteligentes para
aproximar a função
de produção de óleo; e um módulo de caracterização baseado
em mapas de
qualidade para obter informações do campo petrolífero a
serem aproveitadas
durante a otimização. Este trabalho consistiu de 4 etapas:
uma revisão da
literatura sobre desenvolvimento de campos petrolíferos,
simulação de
reservatórios e caracterização de campos petrolíferos; um
estudo das técnicas de
inteligência computacional para otimização e aproximação de
funções;
desenvolvimento do modelo proposto de otimização de
alternativas; e o estudo de
casos. O modelo proposto foi avaliado com configurações de
reservatório
homogêneo e heterogêneo obtendo resultados da otimização,
do uso da
caracterização, da aproximação pelo módulo de inferência e
do uso do ambiente paralelo. Os resultados obtidos mostram
que, o modelo proposto, permite
alcançar respostas com altos VPL sem utilizar conhecimento
prévio, e também a
partir de informações extraídas da caracterização ou
fornecidas pelo próprio
especialista como sementes iniciais na otimização. A
principal contribuição deste
trabalho é a concepção e implementação de um sistema
baseado em técnicas
inteligentes para otimizar alternativas de desenvolvimento
com uma redução do
tempo computacional para um processo iterativo, obtida
tanto pelo
aproveitamento do poder computacional de um ambiente de
computação paralela,
como pelo uso de aproximações das curvas de produção. Este
sistema inteligente
oferece uma ferramenta de suporte à decisão que automatiza
a busca de
alternativas de desenvolvimento e aproveita informações
vindas do conhecimento
do engenheiro de reservatório. / [en] This work investigates the problem of optimization of
alternatives for
petroleum fields` development. A development alternative
refers to the way a
well-known and delimited petroleum field is placed in
production. This process
involves the determination of the number, localization and
scheduling of producer
and injector wells. Thus, the optimization of alternatives
consists of finding the
production configurations that, in the long term, provide
the maximum net present
value (NPV); this is obtained from the investment cost, oil
price, oil & gas
production, operation costs and taxes and royalties paid
during the production
time. The oil and gas production is obtained from a
reservoir simulator. The
simulator receives information from the alternative to be
simulated, and returns an
oil & gas production to specified production time. Each
simulation can take from
a few seconds to several hours, depending on complexity of
the reservoir being
modeled. This work proposes, implements and evaluates an
intelligent
optimization system that comprises: genetic algorithms
(GAs) to search an
optimal development alternative; using of parallel
computing environment to
reservoir simulation and NPV computing; an inference
module, basis in intelligent
models, to approximate the oil production function; and a
oilfield characterization
module, basis in quality maps, to obtain information about
the oilfield to use
during optimization process. This work consisted of four
stages: a literature
review about petroleum field development and reservoir
simulation; a study about
computational intelligence techniques applied in
optimization and functions
approximation; the development of alternatives optimization
proposal model; and
the case studies. The proposal model was evaluated using
homogeneous and
heterogeneous reservoir configurations, obtaining results
of optimization, by using
characterization, the inference module and the parallel
environment. The obtained
results indicate that the proposed model provides
alternatives with high NPV
without previous knowledge and also from information
provided by
characterization or information inserted by the expert as
initial seeds into optimization. The main contribution of
this work is the conception and the
implementation of a system basis in intelligent techniques
to optimize
development alternatives offering a reduction time to an
iterative process,
obtained from exploit of computational effort of a parallel
computing environment
or by using of production curves approximations. This
intelligent system offers a
decision-support tool that allows automating the search
process of development
alternatives and exploiting information from knowledge of
reservoir engineers.
|
309 |
Otimiza??o de Redes de Sensores Visuais sem Fio por Algoritmos Evolutivos MultiobjetivoRangel, Elivelton Oliveira 27 March 2018 (has links)
Submitted by Jadson Francisco de Jesus SILVA (jadson@uefs.br) on 2018-07-18T21:55:12Z
No. of bitstreams: 1
Disserta??o.pdf: 2639155 bytes, checksum: af49bdcdf83d4a063546324a223124a4 (MD5) / Made available in DSpace on 2018-07-18T21:55:12Z (GMT). No. of bitstreams: 1
Disserta??o.pdf: 2639155 bytes, checksum: af49bdcdf83d4a063546324a223124a4 (MD5)
Previous issue date: 2018-03-27 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / Wireless visual sensor networks can provide valuable information for a lot of moni- toring and control applications, which has driven much attention from the academic community in last years. For some applications, a set of targets have to be covered by visual sensors and sensing redundancy may be desired in many cases, especially when applications have availability requirements or demands for multiple coverage perspectives for viewed targets. For rotatable visual sensors, the sensing orientations can be adjusted for optimized coverage and redundancy, with different optimization approaches available to address this problem. Particularly, as different optimization parameters may be considered, the redundant coverage maximization issue may be treated as a multi-objective problem, with some potential solutions to be conside- red. In this context, two different evolutionary algorithms are proposed to compute redundant coverage maximization for target viewing, intending to be more efficient alternatives to greedy-based algorithms. Simulation results reinforce the benefits of employing evolutionary algorithms for adjustments of sensors? orientations, poten- tially benefiting deployment and management of wireless visual sensor networks for different applications. / As redes de sensores visuais sem fio podem obter, atrav?s de c?meras, informa??es importantes para aplica??es de controle e monitoramento, e tem ganhado aten??o da comunidade acad?mica nos ?ltimos anos. Para algumas aplica??es, um conjunto de alvos deve ser coberto por sensores visuais, e por vezes com demanda de redund?ncia de cobertura, especialmente quando h? requisitos de disponibilidade ou demandas de m?ltiplas perspectivas de cobertura para os alvos visados. Para sensores visuais rotacion?veis, as orienta??es de detec??o podem ser ajustadas para otimizar cobertura e redund?ncia, existindo diferentes abordagens de otimiza??o dispon?veis para solucionar esse problema. Particularmente, como diferentes par?metros de otimizac?o podem ser considerados, o problema de maximiza??o de cobertura redundante pode ser tratado como um problema multiobjetivo, com algumas solu??es potenciais a serem consideradas. Neste contexto, dois algoritmos evolutivos diferentes s?o propostos para calcular a maximiza??o de cobertura redundante para visualiza??o de alvos, pretendendo ser alternativas mais eficientes para algoritmos gulosos. Os resultados da simula??o refor?am os benef?cios de empregar algoritmos evolutivos para ajustes das orienta??es dos sensores, potencialmente beneficiando a implanta??o e o gerenciamento de redes de sensores visuais sem fio para diferentes aplica??es.
|
310 |
Algoritmo para obtenção de planos de restabelecimento para sistemas de distribuição de grande porte / Algorithm for elaboration of plans for service restoration to large-scale distribution systemsMansour, Moussa Reda 03 April 2009 (has links)
A elaboração de planos de restabelecimento de energia (PRE) de forma rápida, para re-energização de sistemas de distribuição radiais (SDR), faz-se necessária para lidar com situações que deixam regiões dos SDR sem energia. Tais situações podem ser causadas por faltas permanentes ou pela necessidade de isolar zonas dos SDR para serviços de manutenção. Dentre os objetivos de um PRE, destacam-se: (i) reduzir o número de consumidores interrompidos (ou nenhum), e (ii) minimizar o número de manobras; que devem ser atendidos sem desrespeitar os limites operacionais dos equipamentos. Conseqüentemente, a obtenção de PRE em SDR é um problema com múltiplos objetivos, alguns conflitantes. As principais técnicas desenvolvidas para obtenção de PRE em SDR baseiam-se em algoritmos evolutivos (AE). A limitação da maioria dessas técnicas é a necessidade de simplificações na rede, para lidar com SDR de grande porte, que limitam consideravelmente a possibilidade de obtenção de um PRE adequado. Propõe-se, neste trabalho, o desenvolvimento e implantação computacional de um algoritmo para obtenção de PRE em SDR, que consiga lidar com sistemas de grande porte sem a necessidade de simplificações, isto é, considerando uma grande parte (ou a totalidade) de linhas, barras, cargas e chaves do sistema. O algoritmo proposto baseia-se em um AE multi-objetivo e na estrutura de dados, para armazenamento de grafos, denominada representação nó-profundidade (RNP), bem como em dois operadores genéticos que foram desenvolvidos para manipular de forma eficiente os dados armazenados na RNP. Em razão de se basear em um AE multi-objetivo, o algoritmo proposto possibilita uma investigação mais ampla do espaço de busca. Por outro lado, fazendo uso da RNP, para representar computacionalmente os SDR, e de seus operadores genéticos, o algoritmo proposto aumenta significativamente a eficiência da busca por adequados PRE. Isto porque aqueles operadores geram apenas configurações radiais, nas quais todos os consumidores são atendidos. Para comprovar a eficiência do algoritmo proposto, várias simulações computacionais foram realizadas, utilizando o sistema de distribuição real, de uma companhia brasileira, que possui 3.860 barras, 635 chaves, 3 subestações e 23 alimentadores. / An elaborated and fast energy restoration plan (ERP) is required to deal with steady faults in radial distribution systems (RDS). That is, after a faulted zone has been identified and isolated by the relays, it is desired to elaborate a proper ERP to restore energy on that zone. Moreover, during the normal system operation, it is frequently necessary to elaborate ERP to isolate zones to execute routine tasks of network maintenance. Some of the objectives of an ERP are: (i) very few interrupted customers (or none), and (ii) operating a minimal number of switches, while at the same time respecting security constraints. As a consequence, the service restoration is a multiple objective problem, with some degree of conflict. The main methods developed for elaboration of ERP are based on evolutionary algorithms (EA). The limitation of the majority of these methods is the necessity of network simplifications to work with large-scale RDS. In general, these simplifications restrict the achievement of an adequate ERP. This work proposes the development and implementation of an algorithm for elaboration of ERP, which can deal with large-scale RDS without requiring network simplifications, that is, considering a large number (or all) of lines, buses, loads and switches of the system. The proposed algorithm is based on a multi-objective EA, on a new graph tree encoding called node-depth encoding (NDE), as well as on two genetic operators developed to efficiently manipulate a graph trees stored in NDEs. Using a multi-objective EA, the proposed algorithm enables a better exploration of the search space. On the other hand, using NDE and its operators, the efficiency of the search is increased when the proposed algorithm is used generating proper ERP, because those operators generate only radial configurations where all consumers are attended. The efficiency of the proposed algorithm is shown using a Brazilian distribution system with 3,860 buses, 635 switches, 3 substations and 23 feeders.
|
Page generated in 0.1097 seconds