• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 11
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular investigations of speciation in the sea comparing patterns of diversification in freshwater and marine organisms /

Wilson, Anthony Bruce. January 2002 (has links) (PDF)
Konstanz, University, Diss., 2002.
2

Der Umgang mit knappen Ressourcen aus evolutionsbiologischer und umweltpädagogischer Sicht /

Swonke, Bertram. January 2000 (has links)
Thesis (doctoral)--Universität, Heidelberg, 1999.
3

Singstreit, Ständchen und Signale zur Biologie und Evolution musikalischen Verhaltens

Lehmann, Christian January 2006 (has links)
Zugl.: München, Univ., Diss., 2006
4

Singstreit, Ständchen und Signale : zur Biologie und Evolution musikalischen Verhaltens /

Lehmann, Christian. January 2009 (has links)
Zugl.: München, Universiẗat, Diss., 2006.
5

Der Larvenkopf von Oniscigaster wakefieldi McLachlan, 1873 (Insecta - Ephemeroptera - Onscigastridae) /

Staniczek, Arnold H., January 2001 (has links)
Tübingen, Univ., Diss., 2001.
6

Evolution by genome duplication: insights from vertebrate neural crest signaling and pigmentation pathways in teleost fishes / Evolution durch Genomverdoppelung: Erkenntnisse aus Analysen der Signalwege in der Neuralleiste der Vertebraten und in den Pigmentzellen im Fisch

Braasch, Ingo January 2009 (has links) (PDF)
Gene and genome duplications are major mechanisms of eukaryotic genome evolution. Three rounds of genome duplication have occurred in the vertebrate lineage, two rounds (1R, 2R) during early vertebrate evolution and a third round, the fish-specific genome duplication (FSGD), in ray-finned fishes at the base of the teleost lineage. Whole genome duplications (WGDs) are considered to facilitate speciation processes and to provide the genetic raw material for major evolutionary transitions and increases in morphological complexity. In the present study, I have used comparative genomic approaches combining molecular phylogenetic reconstructions, synteny analyses as well as gene function studies (expression analyses and knockdown experiments) to investigate the evolutionary consequences and significance of the three vertebrate WGDs. First, the evolutionary history of the endothelin signaling system consisting of endothelin ligands and receptors was reconstructed. The endothelin system is a key component for the development of a major vertebrate innovation, the neural crest. This analysis shows that the endothelin system emerged in an ancestor of the vertebrate lineage and that its members in extant vertebrate genomes are derived from the vertebrate WGDs. Each round of WGD was followed by co-evolution of the expanding endothelin ligand and receptor repertoires. This supports the importance of genome duplications for the origin and diversification of the neural crest, but also underlines a major role for the co-option of new genes into the neural crest regulatory network. Next, I have studied the impact of the FSGD on the evolution of teleost pigment cell development and differentiation. The investigation of 128 genes showed that pigmentation genes have been preferentially retained in duplicate after the FSGD so that extant teleost genomes contain around 30% more putative pigmentation genes than tetrapods. Large parts of pigment cell regulatory pathways are present in duplicate being potentially involved in teleost pigmentary innovations. There are also important differences in the retention of duplicated pigmentation genes among divergent teleost lineages. Functional studies of pigment synthesis enzymes in zebrafish and medaka, particularly of the tyrosinase family, revealed lineage-specific functional evolution of duplicated pigmentation genes in teleosts, but also pointed to anciently conserved gene functions in vertebrates. These results suggest that the FSGD has facilitated the evolution of the teleost pigmentary system, which is the most complex and diverse among vertebrates. In conclusion, the present study supports a major role of WGDs for phenotypic evolution and biodiversity in vertebrates, particularly in fish. / Gen- und Genomverdopplungen sind wichtige Mechanismen der Genomevolution in Eukaryonten. Im Verlauf der Evolution der Wirbeltiere gab es drei wichtige Genomduplikationen. Zwei Genomverdopplungen (1R, 2R) fanden während der sehr frühen Vertebratenevolution statt. In der Linie der Fische kam es an der Basis der Teleostier zu einer weiteren, fischspezifischen Genomduplikation (FSGD). Man nimmt an, dass Genomduplizierungen Artbildungsprozesse begünstigen und dass sie zusätzliches genetisches Material für wichtige evolutionäre Übergänge und für die Steigerung morphologischer Komplexität erzeugen. In der vorliegenden Arbeit wurden Methoden der vergleichenden und funktionellen Genomik gewählt, um die Auswirkungen und die Bedeutung der drei Genomverdopplungen bei Vertebraten zu untersuchen. Dazu wurden molekularphylogenetische Stammbaumanalysen und Synteniedaten mit Genexpressionsstudien und Knockdown-Experimenten kombiniert. Zunächst wurde die Evolution des Endothelin-Signalsystems rekonstruiert. Dieses besteht aus Endothelin-Liganden und -Rezeptoren und hat eine Schlüsselrolle in die Entwicklung der Neuralleiste. Die Neuralleiste und die von ihr abgeleiteten Zelltypen sind wirbeltierspezifische Innovationen. Die Analyse zeigt, dass das Endothelin-System in einem gemeinsamen Vorfahren der Vertebraten entstanden ist. Die in den Genomen rezenter Vertebraten vorkommenden Komponenten des Endothelin-Systems sind durch die drei Genomverdoppelungen entstanden. Nach jeder der Duplizierungen kam es zur Ko-Evolution der Liganden- und Rezeptorenfamilien. Die Evolution des Endothelin-System unterstreicht daher die Bedeutung der Genomduplizierungen für den Ursprung und die Diversifizierung der Neuralleiste. Sie weist aber auch auf eine wichtige Rolle für die Integrierung neuer Gene in das regulatorische Netzwerk der Neuralleiste hin. Im Weiteren wurde der Einfluss der FSGD auf die Evolution der Pigmentzellentwicklung und differenzierung in Teleostiern untersucht. Die evolutionäre Analyse von 128 Genen zeigte, dass Pigmentierungsgene nach der FSGD bevorzugt in zwei Kopien erhalten geblieben sind. Daher besitzen rezente Teleostier im Vergleich zu Landwirbeltieren zusätzlich ca. 30% mehr Gene mit potentiellen Funktionen für die Pigmentierung. Große Teile der regulatorischen Signalwege in den Pigmentzellen liegen daher als zwei Kopien vor. Diese waren möglicherweise an der Evolution von Innovationen in der Körperfärbung von Teleostiern beteiligt. In der vorliegenden Arbeit wurden auch wichtige Unterschiede zwischen verschiedenen Fischgruppen im Erhalt duplizierter Pigmentierungsgene gefunden. Funktionelle Studien bei Zebrafish und bei Medaka an Enzymen der Pigmentsynthese, insbesondere der Tyrosinase-Familie, gaben Hinweise darauf, dass die funktionelle Evolution duplizierter Pigmentierungsgene in Fischen linienspezifisch verlaufen kann. Die Studien ergaben außerdem, dass bestimmte Funktionen der Pigmentsyntheseenzyme innerhalb der Vertebraten konserviert sind. Die Evolution des Pigmentierungssystems der Fische, welches das vielfältigste und komplexeste innerhalb der Wirbeltiere ist, wurde somit maßgeblich durch die FSGD beeinflusst. Zusammenfassend weisen die Ergebnisse der vorliegenden Arbeit darauf hin, dass die Verdopplung ganzer Genome ein wichtiger Mechanismus der phänotypische Evolution bei Vertebraten ist und damit in besonderem Maße zur ihrer Biodiversität beiträgt.
7

Belege für eine evolutionär bedingte Partnerwahlpsychologie Replizierungen im Rahmen der Sexual Strategies Theory (SST) von BUSS (1993) mit einer theoretische Einführung in die evolutionäre Psychologie

Kern, Sascha Unknown Date (has links)
Univ., Diplomarbeit, 2006--Frankfurt (Main)
8

Human Adaptation in the Light of Ancient and Modern Genomes

Key, Felix-Michael 13 June 2016 (has links) (PDF)
Modern humans originated in Africa around 200,000 years ago and today have settled in nearly every corner of earth. During migrations humans became exposed to new pathogens, food sources and have encountered vastly different environments. Natural selection likely contributed to the survival under such diverse conditions by promoting the raise in frequency of advantageous alleles. Thereby natural selection leaves genetic footprints that we can identify. The thesis at hand is about understanding how natural selection has shaped different human populations by analyzing these genetic footprints. In the first study, I infer the evolutionary history of an insertion-substitution variant using present-day human genomic data. This variant is interesting because the ancestral allele encodes a previously unannotated open-reading frame for a gene with antiviral ac- tivity (IFNL4 ), while the derived allele truncates this open-reading frame and is strongly associated with improved clearance of Hepatitis C, a major health care problem. Using an approximate bayesian computation approach I infer a complex evolutionary history, where the derived, truncating allele evolved under weak positive selection in Africa, with selection strength increasing in non-African populations, especially in East Asian popu- lations where the truncating allele is nearly fixed today. Hence, the changes in selection and resulting population differences in allele frequency contribute to the variation in Hep- atitis C clearance observed across human populations today. In the second study, I use ancient human genomes to estimate genome-wide allele frequencies in the past to understand present-day population differentiation. I develop a new statistic and incorporate the genome of Ust’-Ishim, a modern human that lived 45,000 year ago in Siberia, to study to what extent natural selection and drift have contributed to human population differentiation. The results suggest that European populations carry high frequency alleles in protein-coding (genic) regions that evolved under strong, recent positive selection. Further, the genic alleles that rose in frequency recently in Europeans were already present in ancient hunter-gatherers more often than in ancient farmers. This suggests that during the colonization of Europe local, positive selection changed the frequency of advantageous alleles in hunter-gatherer populations prior to the influx of farming individuals and those alleles remained beneficial also in the later admixed populations.
9

Human Adaptation in the Light of Ancient and Modern Genomes

Key, Felix-Michael 22 April 2016 (has links)
Modern humans originated in Africa around 200,000 years ago and today have settled in nearly every corner of earth. During migrations humans became exposed to new pathogens, food sources and have encountered vastly different environments. Natural selection likely contributed to the survival under such diverse conditions by promoting the raise in frequency of advantageous alleles. Thereby natural selection leaves genetic footprints that we can identify. The thesis at hand is about understanding how natural selection has shaped different human populations by analyzing these genetic footprints. In the first study, I infer the evolutionary history of an insertion-substitution variant using present-day human genomic data. This variant is interesting because the ancestral allele encodes a previously unannotated open-reading frame for a gene with antiviral ac- tivity (IFNL4 ), while the derived allele truncates this open-reading frame and is strongly associated with improved clearance of Hepatitis C, a major health care problem. Using an approximate bayesian computation approach I infer a complex evolutionary history, where the derived, truncating allele evolved under weak positive selection in Africa, with selection strength increasing in non-African populations, especially in East Asian popu- lations where the truncating allele is nearly fixed today. Hence, the changes in selection and resulting population differences in allele frequency contribute to the variation in Hep- atitis C clearance observed across human populations today. In the second study, I use ancient human genomes to estimate genome-wide allele frequencies in the past to understand present-day population differentiation. I develop a new statistic and incorporate the genome of Ust’-Ishim, a modern human that lived 45,000 year ago in Siberia, to study to what extent natural selection and drift have contributed to human population differentiation. The results suggest that European populations carry high frequency alleles in protein-coding (genic) regions that evolved under strong, recent positive selection. Further, the genic alleles that rose in frequency recently in Europeans were already present in ancient hunter-gatherers more often than in ancient farmers. This suggests that during the colonization of Europe local, positive selection changed the frequency of advantageous alleles in hunter-gatherer populations prior to the influx of farming individuals and those alleles remained beneficial also in the later admixed populations.
10

Exploring Inter-Species Regulatory Differences Through Single Cell Analysis of Drosophila Embryogenesis

Monaco, Anna Alessandra 09 November 2023 (has links)
Variationen in der Genexpression spielen eine zentrale Rolle bei der evolutionären Divergenz, die zur Speziation führt. Dies wird durch Veränderungen sowohl in nicht-kodierenden cis-wirkenden regulatorischen Elementen (CREs) wie Promotoren und Enhancern als auch in trans-wirkenden regulatorischen Elementen bestimmt. Veränderungen in den regulatorischen Sequenzen können Entwicklungsmuster verändern und wirken als eine der treibenden Kräfte der Evolution der Genexpression. Hier untersuche ich die Anwendung der Einzelzell-Multiomik in der evolutionären vergleichenden Genomik, wobei der Schwerpunkt auf den funktionellen Auswirkungen der Divergenz bei cis-regulatorischen Elementen liegt. Unter Verwendung von Hybrid-Embryonen von Drosophila melanogaster und sechellia generiere ich ein diploides Referenzgenom und führe allelspezifische Einzelzellanalysen von scRNA-seq und scATAC-seq durch. Zusammen können diese beiden komplimentären Ansätze einen integrativen Überblick über die Transkription und die Zugänglichkeit des Chromatins liefern, wodurch CREs identifiziert und mit allelspezifischen Veränderungen in den Genen, die sie regulieren, in Verbindung gebracht werden können. Die computergestützte Rekonstruktion verschiedener Zellidentitäten durch Clustering einzelner Zellen ermöglicht es uns auch zu untersuchen, wie sich das Allel-Ungleichgewicht während der Zelltyp-Spezifikation räumlich verändern kann. Im Gegensatz zu früheren Forschungsarbeiten stelle ich fest, dass Gene, die an der Entwicklung und Musterbildung beteiligt sind, ein unterschiedliches allelisches Ungleichgewicht in der Expression und Zugänglichkeit über die Zelltypen hinweg aufweisen. Diese Arbeit zeigt das Potenzial der Kombination von Einzelzell-Multiomik und artübergreifenden Vergleichen in der vergleichenden Genomik und wirft ein neues Licht auf die Rolle von cis-regulatorischen Elementen in der adaptiven Evolution. / Variation in gene expression plays a pivotal role in the evolutionary divergence that leads to speciation. This is determined by changes in both non-coding cis-acting regulatory elements (CREs) like promoters and enhancers, as well as trans-acting regulatory elements. Changes in regulatory sequences can alter developmental patterns, acting as one of the driving forces behind gene expression evolution. However, poor sequence conservation of CREs makes it challenging to identify them and link changes in regulatory sequences to new phenotypes. Here, I explore the application of single cell multiomics in evolutionary comparative genomics, with a focus on functional effects of divergence in cis-regulatory elements. Using hybrid embryos of Drosophila melanogaster and Drosophila sechellia, I generate a diploid reference genome and conduct single cell allele-specific analysis of scRNA-seq and scATAC-seq data. Together, these two assays can provide an integrative read-out of transcription and chromatin accessibility, allowing CREs to be identified and linked to allele-specific changes (allelic imbalance) in the genes they regulate. The computational reconstruction of different cell identities via single cell clustering also allows us to investigate how allelic imbalance may vary spatially during cell-type specification. In contrast to previous research, I find that genes involved in development and patterning display differential allelic imbalance in expression and accessibility across cell types. In addition, I investigate the role of neurodevelopmental allelic imbalance in the sechellia lineage and identify candidate genes for sechellia-specific adaptations. While highlighting current computational limitations, this thesis demonstrates the potential of combining single cell multiomics and cross-species comparisons in comparative genomics and shedding new light on the role of cis-regulatory elements and mechanisms of adaptive evolution.

Page generated in 0.1088 seconds