1 |
EXCITATION OF THE THALLIUM-MERCURY EXCIMER BY PREIONIZED ULTRAVIOLET DISCHARGESHamil, Roy Anthony January 1980 (has links)
No description available.
|
2 |
Investigations into the xenon chloride excimer laserFord, Joseph Earl January 1985 (has links)
A discharge pumped LC inversion type XeCl excimer laser was constructed, and its discharge and output were examined. A maximum output energy of 167 mJ was achieved, with an efficiency of 0.56%, using 60 psi of a gas composed of 0.56% HCl, 2.48% Xe, 48.48% He, and 48.48% Ne. The 308 nm laser output pulse had a fwhm of 20 ns and a peak power of 8.6 MW. When charged to 35 kV, the voltage inversion reached a peak of ~45 kV and dropped to zero in ~35 ns. The fwhm of the discharge current was 46 ns, with a peak current of 15.3 kA. The electron density in the discharge was measured using an infrared Michelson interferometer, and found to have a fwhm of 30 ns and a peak value of 12±5xl0¹⁴ cm⁻³. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
3 |
PHOTODISSOCIATIVE GENERATION OF A POPULATION INVERSION FOR THE THALLIUM-MERCURY EXCIMER SYSTEM (LASERS, EXCIMERS).Retter, Mark Joseph. January 1985 (has links)
No description available.
|
4 |
Thin film adhesion measurement using excimer laser ablation test /Lee, Wen-Chieh. January 1991 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1991. / Typescript. Includes bibliographical references.
|
5 |
Interaction of 157-nm excimer laser light with fused silica, polytertrafluoroethylene and calcium fluorideGeorge, Sharon Rose. January 2010 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, May 2010. / Title from PDF title page (viewed on June 22, 2010). "Department of Physics and Astronomy." Includes bibliographical references.
|
6 |
Optimised part programs for excimer laser-ablation micromachining directly from 3D CAD modelsMutapcic, Emir, n/a January 2006 (has links)
Fabrication of a 3D structure and surface texture using excimer laser mask
projection ablation processes typically requires the machine operator to develop a specific
NC part program for the desired structure geometry, and also incorporate appropriate
machine parameters to achieve the desired surface finish. The capability of the laser
ablation process could therefore be significantly improved by developing a CAD/CAM
system that automatically generates the NC part program using the 3D information of the
CAD model of the desired structure. Accordingly, the focus of this research was to
develop such a system that is, an effective CAD/CAM system specifically for excimer
laser mask projection micromachining tools.
To meet these requirements, a unique combination of commercially available
systems was used to develop the new CAD/CAM system. The systems used comprised of
a computer aided, feature based parametric design system (SolidWorks), together with
its extended programming capabilities based on Automated Programming Interface (API)
functions for Windows applications, and Visual Basic (VB) 6.0 programming utilities.
The system's algorithms use a novel methodology to extract the 3D geometry of a
microstructure. Two different techniques have been developed to extract the 3D data.
First, where 3D geometry information from a CAD model was defined as a Stereolithography
(STL) file, and second, where this information has been contained in a set of
bit-map (BMP) files that represent a sliced or layered structure of a CAD model. Based
on this, first an algorithm to create NC part programs to support Step-and-repeat
micromachining technique was developed and then successfully extended to be applicable
for another commonly used micromachining method, Workpiece-Dragging technique.
The systems algorithms for both techniques are based on the raster-colour
programming technique, resulting in substantially reduced mathematical complexity and
computational time. This is the first time this approach has been used to support direct
conversion of 3D geometry from a CAD model into an NC part program compatible with
the excimer laser CNC controller. 2D mathematical models for controlling edge and
stitching errors were also implemented in the system.
An additional technique, named as 'Common Nest' has been developed with the
aim to enable automatic NC part programming when microstructure design to be
completed successfully, requires use of multiple complex mask patterns as a projection
tool instead of just a single square aperture.
The effectiveness of the system was verified by NC part program generation for
several 3D microstructures and subsequent machining trials using polycarbonate (PC) and
Polyethylene terephthalate (PET), and optimised processing parameters. Excellent
agreement was obtained between the laser machined geometries and the microstructure
CAD models. The Laser Scanning Confocal Microscope (LSCM) measured the lateral
dimensions tolerance of 2m.
The system was also successfully applied for a practical micro-engineering
application, for the development of a microfluidics cell transportation device.
|
7 |
Optimised part programs for excimer laser-ablation micromachining directly from 3D CAD modelsMutapcic, Emir. January 2006 (has links)
Thesis (PhD) - Swinburne University of Technology, Industrial Research Institute Swinburne - 2006. / A thesis submitted to the Industrial Research Institute, Faculty of Engineering and Industrial Sciences, in fulfillment of the requirements for the degree of Doctor of Philosophy, Swinburne, ne University of Technology - 2006. Typescript. Includes bibliographical references (p. 218-229).
|
8 |
Microstructure Analysis and Surface Planarization of Excimer-laser Annealed Si Thin FilmsYu, Miao January 2020 (has links)
The excimer-laser annealed (ELA) polycrystalline silicon (p-Si or polysilicon) thin film, which influences more than 100-billion-dollar display market, is the backplane material of the modern advanced LCD and OLED products. The microstructure (i.e. ELA microstructure) and surface morphology of an ELA p-Si thin film are the two main factors determining the material properties, and they significantly affect the performance of the subsequently fabricated thin film transistors (TFTs). The microstructure is the result of a rather complex crystallization process during the ELA which is characterized as far-from-equilibrium, multiple-pulse-per-area and processing-parameter dependent. Studies of the ELA microstructure and the surface morphology closely related to the device performance as well as the microstructure evolution during the ELA process are long-termly demanded by both the scientific research and the industrial applications, but unfortunately have not been thoroughly performed in the past.
The main device-performance-related characteristics of the ELA microstructure are generally considered to be the grain size and the presence of the dense grain boundaries. In the work of this thesis, an image-processing-based program (referred to as the GB extraction program) is developed to extract the grain boundary map (GB map) out of the transmission electron microscope (TEM) images of the ELA microstructure. The grain sizes are straightforwardly calculated from the GB map and statistically analyzed. More importantly, based on the GB maps, we propose and perform a rigorous scheme that we call the local-microstructure analysis (LMA) to quantitatively and systematically analyze the spatial distribution of the grain boundaries. The “local area” is mainly defined by the geometry and the location of a TFT. The successful extraction of the GB map and the subsequent LMA are permitted by our unique TEM skills to produce high-resolution TEM micrographs containing statistically significant number of grains for sensible quantitative analysis. The LMA unprecedentedly enables quantitative and rigorous analysis of spatial characteristics of the microstructure, especially the device geometry- and location-related characteristics. Additionally, we present and highlight the benefits of the LMA approach over the traditional statistical grain-size analysis of the ELA microstructure.
From the grain-size analysis, we find that grain size across a statistically significant number of grains generally follows the same distribution as in the stochastic grain growth scenario at the beginning of the ELA process when the laser pulse (i.e. shot) number is small. As the shot number increases, the overall grain size monotonically increases while the distribution profile becomes broader. When the scan number reaches the ELA threshold (several tens of laser shots), the distribution profile substantially deviates from the stochastic profile and shows two sharp peaks in grain size around 300nm and 450nm, which is consistent with the previously proposed theory of energy coupling and nonuniform energy deposition during ELA. From the LMA, local nonuniformity of grain boundary density (GB density) at the device length scales and regions of high grain boundary periodicity are identified.
More importantly, we find that the local nonuniformity is much more pronounced when p-Si film exhibits some level of spatial ordering, but less pronounced for a random grain arrangement. It is worth noting that the devices of different sizes and orientation have different sensitivity to the local nonuniformity of the ELA-generated p-Si thin film. In addition, based on the analysis results, the connection between the microstructure evolution and the partial melting and resolidification process of the Si film is discussed.
Aside from the microstructure, the surface morphology of the ELA films, featuring pronounced surface protrusions, is characterized via an atomic force microscope (AFM). Attempts to planarize those surface protrusions detrimental to the subsequent device performance are conducted. In the attempts, the as-is (oxide-capped) ELA films and the BHF-treated ELA films are subjected to single shots of excimer irradiation. When the results are compared, an anisotropic melting phenomenon of the p-Si grains is identified, which appears to be strongly affected by the presence of the surface oxide capping layer. Conceptual models are developed and numerical simulations are employed to explain the observation of the anisotropic melting phenomenon and the effect of the surface oxide layer. Eventually, 41.8% reduction of root mean square (RMS) surface roughness is achieved for BHF-treated ELA films.
The results gained in the systematic analysis of the ELA microstructure and the attempt of surface planarization further our understanding about (1) the device performance-related material microstructure of the ELA p-Si thin films, (2) the microstructure evolution occurring during multiple shots of the ELA process, and (3) the fundamental phase transformations in the far-from-equilibrium melt-mediated excimer-laser annealing processing of p-Si thin films. Such understanding could help engineers when designing the microelectronic devices and the ELA manufacturing process, as well as provide scientific researchers with insights on the melting and solidification of general polycrystalline materials, thus profoundly contributing to both the related scientific society and the technological community. The GB extraction program and the LMA scheme developed and demonstrated in the thesis, as another contribution to the related research filed, could also be generalized to the microstructural study of other polycrystalline materials where grain geometry and arrangement are of concern.
|
9 |
Melting in Superheated Silicon Films Under Pulsed-Laser IrradiationWang, Jin Jimmy January 2016 (has links)
This thesis examines melting in superheated silicon films in contact with SiO₂ under pulsed laser irradiation. An excimer-laser pulse was employed to induce heating of the film by irradiating the film through the transparent fused-quartz substrate such that most of the beam energy was deposited near the bottom Si-SiO₂ interface. Melting dynamics were probed via in situ transient reflectance measurements. The temperature profile was estimated computationally by incorporating temperature- and phase-dependent physical parameters and the time-dependent intensity profile of the incident excimer-laser beam obtained from the experiments.
The results indicate that a significant degree of superheating occurred in the subsurface region of the film. Surface-initiated melting was observed in spite of the internal heating scheme, which resulted in the film being substantially hotter at and near the bottom Si-SiO₂ interface. By considering that the surface melts at the equilibrium melting point, the solid-phase-only heat-flow analysis estimates that the bottom Si-SiO₂ interface can be superheated by at least 220K during excimer-laser irradiation.
It was found that at higher laser fluences (i.e., at higher temperatures), melting can be triggered internally. At heating rates of 10¹⁰ K/s, melting was observed to initiate at or near the (100)-oriented Si-SiO₂ interface at temperatures estimated to be over 300K above the equilibrium melting point. Based on theoretical considerations, it was deduced that melting in the superheated solid initiated via a nucleation and growth process. Nucleation rates were estimated from the experimental data using Johnson-Mehl-Avrami-Kolmogorov (JMAK) analysis. Interpretation of the results using classical nucleation theory suggests that nucleation of the liquid phase occurred via the heterogeneous mechanism along the Si-SiO₂ interface.
|
10 |
Modeling and Diagnosis of Excimer Laser AblationSetia, Ronald 23 November 2005 (has links)
Recent advances in the miniaturization, functionality, and integration of integrated circuits and packages, such as the system-on-package (SOP) methodology, require increasing use of microvias that generates vertical signal paths in a high-density multilayer substrate. A scanning projection excimer laser system has been utilized to fabricate the microvias. In this thesis, a novel technique implementing statistical experimental design and neural networks (NNs) is used to characterize and model the excimer laser ablation process for microvia formation. Vias with diameters from 10 50 micrometer have been ablated in DuPont Kapton(r) E polyimide using an Anvik HexScan(tm) 2150 SXE pulsed excimer laser operating at 308 nm. Accurate NN models, developed from experimental data, are obtained for microvia responses, including ablated thickness, via diameter, wall angle, and resistance. Subsequent to modeling, NNs and genetic algorithms (GAs) are utilized to generate optimal process recipes for the laser tool. Such recipes can be used to produce desired microvia responses, including open vias, specific diameter, steep wall angle, and low resistance. With continuing advancement in the use of excimer laser systems in microsystems packaging has come an increasing need to offset capital equipment investment and lower equipment downtime. In this thesis, an automated in-line failure diagnosis system using NNs and Dempster-Shafer (D-S) theory is implemented. For the sake of comparison, an adaptive neuro-fuzzy approach is applied to achieve the same objective. Both the D-S theory and neuro-fuzzy logic are used to develop an automated inference system to specifically identify failures. Successful results in failure detection and diagnosis are obtained from the two approaches. The result of this investigation will benefit both engineering and management. Engineers will benefit from high yield, reliable production, and low equipment down-time. Business people, on the other hand, will benefit from cost-savings resulting from more production-worthy (i.e., lower maintenance) laser ablation equipment.
|
Page generated in 0.0661 seconds