• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 521
  • 521
  • 97
  • 78
  • 70
  • 70
  • 57
  • 52
  • 44
  • 44
  • 43
  • 41
  • 38
  • 34
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Effects of Bingocize® on Quality of Life, Fall Risk, and Health Knowledge in Community-Dwelling Older Adults

Dispennette, Alyssa Kathryn 01 July 2018 (has links)
Quality of life (QOL) is an important aspects of overall well-being in older adults. QOL is associated with functional, physical, and psychological health; all of which can be improved with increased physical activity. A high fall risk is associated with low physical function and QOL. One in four older adults experiences a fall each year, making it necessary to focus public health interventions towards decreasing fall risk and improving QOL in older adults. Bingocize® is a health promotion program designed to promote health, health knowledge, physical activity, and social engagement among older adults. The purpose of this study was to determine the effects of the new version of Bingocize® on QOL and fall risk in community-dwelling older adults (N=36; mean age 73.63 ± 6.97). Participants were clustered and randomly assigned to (a) experimental (n=19; participating in Bingocize® program, which included the bingo game, exercise, and health education) or (b) control (n=17; only played bingo). Each group completed a 12-week intervention that consisted of two 45-60 minute sessions per week. Pre and post data assessments included the TUG, 30-second chair stand, 4-staged balance, handgrip strength, WHOQOL-BREF, PANAS, and a health knowledge quiz. A mixed design analysis of variance (ANOVA) was used to compare intervention effects. There were no significant interactions for any of the variables, with the exception of positive affect (PA) (F (1,34) = 5.66, p = 0.02, 𝜂𝑝 2 = 0.15, power = 0.64) and handgrip strength (F (1,34) = 8.31, p = 0.007, 𝜂𝑝 2 = 0.196, power = 0.80).. There was also a significant main effect for time for health knowledge. Post hoc analysis using independent samples t-tests were conducted on PA (t (33) = 2.39, p = 0.023, two-tailed) and handgrip strength (t (34) = 2.85, p = 0.007, two-tailed). Participating in the Bingocize® health promotion program can produce a meaningful and detectable change in handgrip strength and PA in community-dwelling older adults.
332

Effects of Evidence-Based Materials and Access to Local Resources on Physical Activity during Pregnancy

Edens, Kolbi 01 April 2019 (has links)
No description available.
333

Observation and Self-Report of Fun and Social Engagement of Nursing Home Residents During Bingocize®

Stevens, Lauren Rene 01 April 2019 (has links)
Individuals in certified nursing facilities (CNF) often experience social isolation and have limited opportunities to exercise. Bingocize®, an evidence-based healthpromotion program, is a combination of exercise and Bingo and provides opportunities for CNF resident interaction. Limited tools are available to quantify social engagement displayed by nursing home residents. Research suggests that intergenerational programming can positively affect social engagement. The present pilot study focused on the implementation of the Fun and Social Engagement (FUSE) evaluation to measure social engagement displayed by nursing home residents during Bingocize® sessions. The FUSE combined observation and self-report measures to yield a total social engagement score. Social engagement data were collected during Bingocize® sessions with university students interacting with residents and without student presence. Participants (M age = 82) included 35 residents from certified nursing facilities in Kentucky that receive funding from the Civil Money Penalty grant by Centers for Medicare and Medicaid Services. The purpose of this study was to determine if participants display increased positive social engagement during Bingocize® sessions when students are present versus when they are not, as well as if there is a difference between the participants’ self-report measure of engagement versus the observational report. Data were collected across four Bingocize® sessions, two with intergenerational programming and two without. Paired t-tests were conducted to determine overall participant engagement scores with and without student presence. Because of absenteeism, only two of the comparisons had a sufficient number of participants to analyze the effect of student presence. Comparing scores of the same residents, FUSE scores were higher in sessions with students present versus when students were not (p < .05). A two-sample t-test revealed that residents who reported happiness had higher observational scores than those who reported they were not happy. The results of this pilot study are tentative due to limited number of participants at some of the sessions. Future studies are needed to determine reliability of the FUSE. Nevertheless, this study suggests that the FUSE is a feasible tool for measuring fun and social engagement during Bingocize® and that university students have a positive effect on resident social engagement.
334

THE EFFECT OF SLEEP QUANTITY AND QUALITY ON DIRECT CURRENT POTENTIAL IN COLLEGIATE AMERICAN FOOTBALL PLAYERS

Korem, Erik D. 01 January 2018 (has links)
Direct current (DC) potential is an objective measure of the functional state of the human organism. It is a sensitive and accurate indicator of short- and long-term adaptations to stress, adaptive capacities, and it is an important marker of athlete readiness. Sleep is posited to be the most efficacious strategy for improving recovery to enhance sport performance, and adequate sleep is considered vital to normal psycho-physiological function. Thus, optimal sleep may enhance the functional state, in turn enhancing an athlete’s adaptability to training stress. However, little is known about the relationship between sleep and DC potential. Therefore, the purpose of this study was to examine the effect of acute (one-night) and extended (two-night) sleep quantity and quality on DC potentials in collegiate American football players. Twenty-four Division 1 American football players (Age: 20.6 ± 1.30 yr; Height: 183.4 ± 6.40 cm; Body mass: 114.40 ± 24.60 kg) wore a wrist-worn actigraphy band seven days per week over the course of 136 days, which spanned the pre-season training camp and competitive season, to measure sleep quantity and quality. DC potential was assessed six days per week using the Omegawave Ltd (Espoo, Finland) athlete monitoring system either 30 minutes upon waking or 75-120 minutes prior to the onset of the football training session. Sleep quantity was stratified into duration categories and sleep quality was stratified within sleep latency, number of awakenings, and sleep efficiency variables. Sleep quantity and quality were evaluated using acute (one night) and extended (rolling average of two consecutive nights) sleep outcomes. Within subject comparisons of DC potential were made across sleep quantity and quality categories using repeated-measures analysis of variance to examine the influence of acute and extended sleep quantity and quality on DC potential outcomes. The level of significance was set at p ≤ 0.025. Statistically significant main effects were identified for acute sleep (F3,16 = 4.68, p < .02, η2p = 0.47) and extended sleep durations (F2,17 = 7.71, p < 0.005, η2p = 0.48). Specifically, for acute sleep durations, there was a 17.1% increase in DC potentials (3.59, p < 0.01, Cohen’s d = 0.52, SE 1.18) for sleep durations ≥ 7 hours to < 9 hours, compared to sleeping < 6. For extended sleep, there was a 20% increase in DC potentials (4.53, p < 0.002, Cohen’s d = 0.68, SE = 1.13) when recording a two-day sleep average of ≥ 7.5 hours and < 9 hours, compared to an extended sleep duration of < 6 hours. A statistically significant main effect was also identified for extended wake episodes (F2,19 = 4.5, p = 0.025, η2p = 0.32). For extended sleep periods with > 4 wake episodes there was a 12% increase in DC potentials (2.57 ± 2.24mV, p < 0.25, Cohen’s d = 0.34) compared to extended sleep periods with 2-3 wake episodes. There was not a significant effect of acute (p ≥ 0.20) sleep quality or extended latency (p > 0.18) and efficiency (p > 0.08) on DC potentials. These findings suggest that sleep quantity affects DC bio-potentials and thus the functional state of the athlete. Specifically, sleep durations between 7.00/7.50 to 9 hours correspond with higher measures of DC potentials compared to lesser durations. Given the effect of sleep quantity on biological markers for training adaptability, practitioners should prioritize sleep in the training process and educate athletes on proper sleep hygiene and sleep quantity to enhance their readiness to train.
335

THE BIOMECHANICAL IMPACT OF WEIGHT ON THE LOWER EXTREMITY

Ransom, Amanda Lee 01 January 2018 (has links)
Background: Obesity is a chronic disease characterized by a body mass index (BM1) of ≥ 30 kg/m2 which negatively impacts the musculoskeletal system and has been found to be a major contributing factor to obesity-induced biomechanical alterations during activities of daily living (ADLs). A certain level of mobility is required for all populations to maintain independence and a good quality of life becomes more difficult with excess weight. Using a reduced weight-bearing activity, such as the Alter Gravity treadmill, would be beneficial in an obese population to reduce the load on the joints and potentially decrease the risk of weight bearing injury while maintaining normal gait mechanics. The purpose of this dissertation was to determine the biomechanical effects of excess weight and weight distribution on ADLs. To address this, two different weight gain models were created to simulate central (CL) and peripheral (PL) weight gain compared to an obese group (OW), and normal weight group (UL) during different activities of daily living (ADLs). The purpose of the third study was to compare lower extremity joint kinematics and muscle activation patterns between obese and normal individuals at different levels of body support (100, 75, and 50%) while walking in the AlterG treadmill. Methods: 14 normal weight (BMI: 22.4 ± 1.8 kg/m2, age: 23.4 ± 3.6 yrs) and 17 obese (BMI: 33.2 ± 2.3 kg/m2, age: 31.6 ± 8.0 years) adults participated in different ADLs (gait and descending a set of stairs). Normal weight participants were loaded with two different external loads sufficient to increase their BMI by 5 kg/m2 (~22.6% body mass). Kinematic and kinetic data were collected with 3D motion analysis. Frontal plane hip and knee angles and moments were calculated. Results: During gait, the obese group walked at a significantly slower velocity compared to UL. Step length was 8.7% longer in UL and 7.4% longer in the CL compared to the OW. PL more closely mirrored the OW group in step length, flexion moment and extension moment and the CL more closely mirrored the obese group in sagittal plane knee and hip excursion, and peak hip flexion moment and extension moment during gait During the transition from descending stair walking to level gait, it was found that the PL, but not CL, decreased step length, increased step width, and increased proportion of the gait cycle spent in stance. During the transition from walking down the stairs to level gait it was found that CL and PL affect temporal spatial variables differently. PL also reduced peak hip adduction angle, increased peak hip flexion moment, decreased peak hip extension, decreased sagittal plane hip excursion, and decreased frontal plane hip excursion. Conversely, CL reduced peak hip flexion moment and trended to reduce peak hip extension moment. To determine the effects of reduced body mass per se on improved biomechanics, we needed a model that would prevent associated changes in segmental volume. Therefore, using an AlterG treadmill facilitated this method. At 100 % BW support, mean ST and VM EMG activity were significantly higher in the obese compared to the normal weight groups. There were also differences found at 75 % BW support in ST in the obese being greater than the normal. Conclusions: Combined, the overall results of this dissertation suggest that weight gain is able to be modeled but is variable and task specific. The CL has proven to be the weight gain model that which elicits a better biomechanical obese response when normal weight individuals are loaded. Further work is needed to understand how to truly mimic obesity with an external load.
336

HEART RATE DYNAMICS DURING AND AFTER SIMULATED FIRE GROUND TASKS: EFFECTS OF PHYSICAL FITNESS AND TRAINING

Saari, Anssi Ilmari 01 January 2019 (has links)
Firefighting is a strenuous occupation that increases the risk of cardiovascular events. Greater levels of physical fitness and training improve firefighters’ occupational performance, but little is known whether they are related to lower physiological stress and recovery from fire ground tasks. Heart rate, heart rate recovery and heart rate variability have been used to evaluate physical stress in association with exercise and fire ground tasks. However, there is a paucity of research evaluating the effects of physical fitness and training on heart rate dynamics during a simulated fire ground test (SFGT). Therefore, the primary purposes of this study were to evaluate the relationships between heart rate dynamics during a SFGT and to determine the effects of physical characteristics, fitness and physical training on these measures. The secondary purpose was to assess the relationship between maximal pace SFGT time and heart rate responses from a standardized pace SFGT. This information will help to understand the relationship between occupational performance and level of physical stress associated with work on the fire ground. Twenty-one firefighter academy recruits (Age = 28.4 ± 4.0 yr; Height = 177.1 ± 6.9 cm; Body mass = 88.3 ± 15.4 kg) participated in this cross-sectional and longitudinal study. The subjects completed a battery of physical fitness tests, including a 1.5-mile run, maximal pull-ups, push-ups, sit-ups, and isometric plank hold. In addition, the subjects completed a standardized pace SFGT that consisted of typical fire ground tasks performed in succession, without recovery (i.e., high-rise pack carry, hose drag, equipment carry, ladder raise, forcible entry, search, and victim rescue tasks). Heart rate variability was measured pre- and post-SFGT, and heart rate and 60 s heart rate recovery were measured during and post-SFGT, respectively. After a 10 wk physical training intervention, composed of approximately four physical training sessions per week, the measurements were repeated. A subsample of the original cohort (n = 11) also completed a maximal pace SFGT where their completion time was used as a measure of work capacity. Independent variables for this study included the physical and fitness test measures, physical training and maximal pace SFGT completion time. Dependent variables for this study were mean heart rate reserve during the SFGT (HRRes), difference between resting and mean heart rate during SFGT (HRSFGT-Rest), 60-second heart rate recovery (HRR60), and the difference between resting and post-SFGT root mean square of standard deviation between consecutive heart beats in logarithmic scale (LnRMSSDPost-Rest) measured with standardized pace SFGT. Independent and dependent variables were obtained at baseline and after physical training. Pearson r correlation coefficient was used to evaluate associations between outcome measures. Dependent samples t-test was used to compare differences in outcome measures at baseline and following physical training. Linear regression was used to evaluate the association between independent and dependent variables with standardized pace SFGT at baseline. Linear regression was used to assess the relationship between maximal pace SFGT time and outcome measures during the standardized pace SFGT. The level of significance was set as p ≤ 0.05 for all statistical analyses. In the standardized pace SFGT there was a positive correlation between HRSFGT-Rest and HRRes (R = .79, p < .01). LnRMSSDPre-Post was positively correlated with HRRes (R = .47; p < .05) HRSFGT-Rest (R = .70; p = .01) and HRPost-Rest (R = .84; p < .01). There was also a significant inverse correlation between HRPost-Rest and HRR60 (R = -.46; p < .05). Greater height and fat-free mass were favorably associated with HRSFGT-Res (R2 = .57; p = .02), HRRes (R2 = .55; p = .003) and HRPost-Rest (R2 = .59; p = .02). Height was also associated with attenuated depression of LnRMSSDRest-Post. After accounting for the effect of other independent variables in the multiple linear regression models, height was the only significant predictor for HRSFGT-Rest (β = -.90), HRRes (β = -.64), HRPost-Rest (β = -.76) and LnRMSSDRest-Post (β = -.06). A significant decrease in HRRes (80.1 ± 6.7% vs. 76.0 ± 6.7%; p < 0.001) and increase in HRR60 (29.4 ± 8.3 b∙min-1 vs. 37.8 ± 9.0 b∙min-1; p < .001) were observed after the physical training intervention. There was a significant correlation between maximal pace SFGT time and the standardized pace SFGT HRR60 (R = -0.70; p = 0.02), but not with other dependent variables. In summary, these findings indicate that greater cardiovascular demand during fire ground tasks is related to greater physical stress and lower parasympathetic activity during recovery. Greater height and fat-free mass as well as physical training are associated with lower physiological stress and accelerated recovery from fire ground tasks. Support for relationships between work capacity and heart rate dynamics during a standardized submaximal pace SFGT is limited, indicating that independent SFGT conditions may be necessary to provide work capacity and health information, respectively.
337

MUSCLE ACTIVATION ANALYSIS WITH KINEMATIC COMPARISON BETWEEN WIND-UP AND STRETCH PITCHING WITH RESPECT TO THE UPPER AND LOWER EXTREMITIES

Smidebush, Megan M. 01 January 2018 (has links)
Introduction: Baseball pitching is considered one of the most intense aspects within the game of baseball, as well as the most complicated dynamic throwing task in all of sports. The biomechanics of pitching have been heavily investigated in an attempt to identify optimal pitching mechanics in terms of pitching performance. Previous quantified upper body kinetics research has concluded that improved muscle strength is needed in attempting to achieve adequate upper body kinetics and efficient pitching performances. Therefore, it is the purpose of this research study to compare the lower extremity muscle and upper extremity muscle activation patterns and kinematic variables associated with the curveball pitch and the fastball pitch when pitching from the wind-up and stretch position. Methods: Twelve skilled (competed at the NCAA collegiate level) baseball pitchers volunteered to be research subjects for this study. The participants were fitted with six surface electromyography (EMG) bipolar electrodes (Delsys Inc., Boston, Massachusetts) on the stride leg biceps femoris, medial gastrocnemius, ipsilateral side (throwing arm side) lower trapezius, upper trapezius, triceps brachii and biceps brachii. Each participant underwent maximum voluntary isometric contraction (MVIC) testing and then performed a pitching analysis. All EMG variables of interest were normalized using MVIC data and then compared between pitching types and pitch delivery. Shoulder rotation, shoulder abduction, elbow flexion and extension, elbow angular velocity and pelvis rotation were determined using motion capture (Motion Analysis Corp., Santa Rosa, SA) and Visual 3D software (C-Motion Inc., Germantown, MD). Paired t-tests and factorial analyses were performed using SPSS (p ≤ 0.05). Results and Discussion: Significant differences in the peak and mean muscle activity for the fastball and curveball pitched from wind-up and stretch position were observed. Significant differences in the kinematic variables between the fastball and curveball from the wind- up and stretch were also observed. These findings suggest that upper and lower muscle activity could be associated with enhanced pitching technique and pitching performance. Pitching kinematic differences associated with the diverse pitch types as well as the multiple pitch deliveries may impact the overall “wear and tear” on a pitcher’s health and pitching arm. Conclusions: Many differences were found, between both the pitching type and the pitching delivery as well as the kinematic variables. These findings suggest that upper and lower muscle activity could be associated with enhanced pitching technique and pitching performance to keep a baseball pitcher healthy and on the pitching mound longer into the season, decreasing the rate of injury. Shoulder rotation and pelvis rotation, as well as the elbow angular velocity and elbow flexion-extension, have an impact on the pitcher’s ability to stay off the disabled list and in the game longer. Determining pitch types along with delivery types that enhance the pitcher’s ability to stay active without injury will provide a way to make the game of baseball safer for the future generation of all stars.
338

ROLE OF SKELETAL MUSCLE MASS IN SEX-DEPENDENT POWER OUTPUT DURING FLYWHEEL RESISTANCE TRAINING

Baker, Paul A. 01 January 2018 (has links)
Background: To determine the role of muscle mass in sex-dependent differences in power output during flywheel resistance training (FRT). Methods: Twenty recreationally active (≥ 2 resistance exercise bouts per week), subjects (10 M, 10 F) completed 2 bouts of resistance exercise using a flywheel resistance training (FRT) device (Exxentric kbox 4 Pro) separated by at least one week. Each session consisted of 3 sets of 4 exercises (squat, bent-over row, Romanian deadlift, and biceps curl) with varying moments of inertia (0.050, 0.075, and 0.100 kg/m2, respectively) in random order. Each set consisted of 5 maximal effort repetitions with 3-minute recovery between sets. Average power, peak concentric and peak eccentric power were recorded and normalized to whole-body skeletal muscle mass (as calculated from bioelectrical impedence analysis). Additionally, linear regression analysis was used to determine the association between muscle mass and highest power output observed among all three inertial loads. Results: Absolute average, peak concentric and peak eccentric power for all lifts was significantly higher for males compared to females except for peak eccentric power for biceps curl which showed no significant difference. After normalizing to skeletal muscle mass, power output remained significantly higher for men in Row average power and peak concentric power as well as average power for biceps curl. A significant main effect of inertial load was noted for both absolute and relative power output for all exercises except for squat average power and peak concentric power. Regression analysis revealed that power output increases linearly with skeletal muscle mass (R2 = 0.37-0.77). Conclusions: Differences in power output between sexes during resistance exercise can largely be explained by differences in muscle mass. Indeed, muscle mass accounts for approximately 37-77% of the variance in power output during FRT depending on the exercise. Increasing inertial load tends to decrease power output during FRT.
339

EFFECTS OF INERTIAL LOAD ON SAGITTAL PLANE KINEMATICS DURING FLYWHEEL-BASED RESISTANCE TRAINING SQUATS

Worcester, Katherine Sara 01 January 2018 (has links)
Background: Training to increase muscular power is essential for improving athletic performance in most sports. Weight training (WT) is a common means for training muscular power. Another modality, flywheel resistance training (FRT), may be superior for improving muscular power. However, few studies have examined if FRT is kinematically similar to WT, or if FRT kinematics change with increasing inertial load. The purposes of this study were to determine how sagittal plane joint kinematics are affected by increasing inertial load during FRT squats, and to determine how FRT squat joint kinematics compare to WT squat joint kinematics. Methods: Subjects (n=9) completed three visits for this study. On the first visit subjects completed squat 1 repetition maximum (1RM) testing. The second visit served as a full FRT familiarization session in which subjects performed one set of 5 maximal effort FRT squats at each inertial load (0.050, 0.075, and 0.100 kgm2). On the third visit, subjects were videoed in the sagittal plane while performing the FRT squat protocol. Subjects then completed 5 maximal velocity repetitions of WT squats with the barbell loaded according to the Kansas Squat Test (KST) protocol. Kinematic differences between inertial loads were determined via 1-way repeated measures ANOVAS while differences between FRT and WT were determined with paired T-tests. Results: There were no differences in peak sagittal plane knee, trunk-hip, trunk (absolute) or ankle angles between inertial loads. Peak and mean joint angular velocities decreased with increasing inertial loads at the knee and trunk-hip. Mean joint angular velocities decreased at the ankle with increasing inertial loads, while peak and mean trunk (absolute) angular velocities were unaffected. No statistical analyses were conducted for FRT and WT comparison as not enough subjects met the criteria (n=3). Conclusions: Sagittal plane joint kinematics are largely maintained despite increasing inertial load during FRT squats. Lower extremity joint angular velocities decreased with increasing inertial load. If training for muscular power and knee extensor velocity is the goal, then the inertia of 0.050 kgm2 is most suitable.
340

Analysis of Push-Up and Pull-Up Variants to Develop an Upper Extremity Model

Wimsett, Ashley Carlene 01 January 2019 (has links)
Musculoskeletal Injuries are the most common cause of severe long-term pain and physical disability. Push-Ups and Pull-Ups are effective dynamic exercises that mimic high level function activities, such as those used in the military. The model developed allows for researchers to analyze the forces and moments associated with the shoulder, elbow and wrist, to further assess function in military personnel, athletes and the active population. The model also follows the guidelines set forth by the International Society of Biomechanics (ISB).

Page generated in 0.0818 seconds