Spelling suggestions: "subject:"exons chip""
1 |
Bases génétiques de la dysplasie fibromusculaire : une approche d’étude d’exome et de génétique épidémiologique / Understanding the genetic basis of fibromuscular dysplasia using approaches of whole exome sequencing and genetic epidemiologyKiando, Soto Romuald 08 July 2016 (has links)
La dysplasie fibromusculaire artérielle (DFM) est un groupe de pathologies vasculaires non inflammatoires, et non athéromateuses de la paroi artérielle. Elle est caractérisée par la sténose, l'occlusion, l’anévrisme ou la dissection des artères de petit et moyen calibres, en particulier les artères rénales et le tronc supra-aortique. La DFM est un facteur de risque de l’hypertension et de l’accident vasculaire cérébral. Elle touche essentiellement les femmes (80% des cas) de moins de 50 ans. La prévalence en population générale est inconnue et les estimations varient de 0.4% pour les formes cliniques à 4% dans une cohorte de donneurs de reins. Une agrégation familiale a été démontrée et une composante génétique suggérée. L'objectif de mon travail de thèse était de caractériser les bases génétiques la DFM. Dans la première partie, nous avons analysé des variants génétiques rares générés par séquençage d'exomes chez 16 cas apparentés de DFM issus de 7 fratries. Aucun gène majeur n’était muté pour l’ensemble des fratries ou pour au moins 3 fratries sur 7. Cependant, nous avons pu mettre en évidence puis validé un enrichissement en variants rares à fort potentiel fonctionnel de quatre gènes candidats pour la DFM (MYLK, OBSCN, DYNC2H1, RNF213) en combinant l’approche de séquençage d’exomes et l’étude d’association gène entier de 62767 variants rares (MAF < 5%) générés par génotypage avec la puce Exome-chip chez 249 cas non apparentés de DFM et 689 témoins. Cependant, l’implication de ces gènes dans la DFM doit être confirmée dans d’autres familles, et par des études de validations fonctionnelles. Dans la seconde partie, nous avons étudié l'association avec la DFM de 25606 variants fréquents (MAF ≥ 5%) de l’Exome-chip. Les résultats majeurs obtenus ont été répliqués dans une première étude (402 cas de DFM et 2537 témoins) puis dans 3 autres études incluant 512 cas de DFM et 669 témoins. La méta-analyse de l’ensemble a permis d’associer à la DFM le polymorphisme rs9349379-A situé dans l’intron du gène PHACTR1 (OR=1,39 [1,39-1,54] ; P=7,36 ×10-10). Ce variant est aussi un facteur de risque pour la maladie coronaire, la migraine et la dissection de l’artère cervicale. Des études complémentaires conduites chez 2458 volontaires non malades ont permis de montrer que l’allèle à risque pour la DFM, rs9349379-A est associé avec une augmentation de l’épaisseur intima média (P=1,97×10-4) et du rapport de la paroi sur la lumière artérielle (P=0,002), deux paramètres décrits comme augmentés chez les cas de DFM dans des études antérieures. Ensuite, PHACTR1 a été détecté par immunohistochimie dans l’endothélium et les cellules musculaires lisses de carotides dysplasiques et non dysplasiques avec une expression augmentée de PHACTR1 pour les porteurs de l’allèle à risque de DFM dans des cultures primaires de fibroblastes humains (N=86, P=0,003). Enfin, l’invalidation de Phactr1 chez le poisson zèbre conduit à une dilatation des vaisseaux indiquant un défaut du développement vasculaire. Ce travail confirme le caractère multifactoriel et hétérogène de la DFM et ouvre de nouvelles perspectives pour évaluer l’ensemble de la variabilité génomique des patients de DFM par des approches massives de génétique épidémiologique. / Fibromuscular dysplasia (FMD) is a group of nonatherosclerotic and noninflammatory vascular diseases leading to stenosis, aneurysm, dissection and/or occlusion of medium-sized arteries, in particular the renal and extracranial cervical arteries. Clinical manifestations of FMD are hypertension, dizziness, pulsatile tinnitus, transient ischemic attack or stroke, according to the involved arterial beds. FMD occurs predominantly (80% of cases) in females under 50 years with a variable prevalence estimation from 0.4% for asymptomatic clinical relevant forms to 4% in potential renal donors. The pathogenesis of FMD is unknown and a genetic origin is suspected given its demonstrated familial aggregation. The aim of my thesis work was to characterize genetic basis of FMD. In the first part of this thesis, we analyzed whole exome sequencing data in 16 related FMD cases from seven families. No gene harbors variants that were shared by all affected members in at least three out seven families. Using combined strategy of whole exome sequencing and gene based association study of 62,767 rare variants (MAF < 5%) generated by Exome‐chip arrays in 249 unrelated FMD cases and 689 controls, we have identified and validated an enrichment of rare and putatively functional variants in four candidates genes (MYLK, OBSCN, DYNC2H1 and RNF213). This results need to be validated in other FMD families and by functional analysis. In the second part, we analyzed 25,606 common variants (MAF ≥ 5%) generated by Exome‐chip array. Top loci were replicated in first replication study (402 cases and 2,537 controls) and in 3 others studies (512 cases and 669 controls). Meta-analysis of all including 1,154 unrelated FMD cases and 3,895 controls allowed identification of association between FMD and rs9349379-A (OR=1.39 [1.39-1.54]; P=7.4×10‐10). rs9349379 is intronic to PHACTR1, a risk locus for coronary artery disease, migraine, and cervical artery dissection. The analyses of geometrical parameters of carotids from 2,458 healthy volunteers indicated higher intima media thickness (P = 1.97×10‐4) and wall to lumen ratio (P = 0.002) in rs9349379‐A carriers, suggesting indices of carotid hypertrophy as previously described in carotids of FMD patients. Immunohistochemistry detected PHACTR1 in endothelium and smooth muscle cells of FMD and normal human carotids. The expression of PHACTR1 by genotypes in primary human fibroblasts showed higher expression in rs9349379‐A carriers (N=86, P=0.003). Phactr1 knockdown in zebrafish resulted in dilated vessels indicating subtle impairment of vascular development. This work confirms the multifactorial and heterogeneous genetic architecture of the FMD and opens new opportunities to evaluate all of genomic variability of FMD patients with massive genetic epidemiology approaches.
|
2 |
Genetic determinants of rare disorders and complex traits : insights into the genetics of dilated cardiomyopathy and blood cell traitsChami, Nathalie 04 1900 (has links)
Les facteurs génétiques peuvent apporter des réponses à plusieurs questions que nous nous posons sur les traits humains, les maladies et la réaction aux médicaments, entre autres. Avec le temps, le développement continu d'outils d'analyse génétique nous a permis d'examiner ces facteurs et de trouver des explications pertinentes. Cette thèse explore plusieurs méthodes et outils génétiques, tels que le séquençage pan-exomique et le génotypage sur puce, dans un contexte d'analyse familial et populationnel pour étudier ces facteurs génétiques qui jouent un rôle dans une maladie rare, la cardiomyopathie dilatée (DCM), et dans deux traits complexes soient les globules rouges et les plaquettes.
DCM est une maladie rare qui est définie par un ventricule gauche dilaté et une dysfonction systolique. Environ 30% des cas de DCM sont héréditaires, et plus de 50 gènes ont été associés à un rôle dans la pathogénicité de DCM. Le dépistage génétique est un outil de référence dans la gestion clinique de DCM familiale. Par contre, pour la majorité des patients, les tests génétiques ne parviennent pas à identifier une mutation causale dans un gène candidat.
Les cellules sanguines remplissent une variété de fonctions biologiques, incluant le transport de l'oxygène, les fonctions immunologiques, ainsi que la guérison de plaies. Les niveaux de ces cellules et leurs paramètres auxiliaires sont mesurés par un test sanguin, et une différence avec les valeurs optimales peut signifier certains troubles. De plus, ces traits sont étudiés méticuleusement dans le contexte des maladies cardiovasculaires (CVD) où différents niveaux sont associés avec un risque variable de CVD ou sont des prédicteurs de complications de CVD.
iii
J'ai examiné la DCM et les traits sanguins avec comme objectif de découvrir des nouvelles associations de mutations génétiques. Pour la DCM, j'ai évalué la pertinence d'un séquençage pan-exomique dans un environnement clinique. Je rapporte plusieurs nouvelles mutations dans des gènes candidats (DSP, LMNA, MYH7, MYPN, RBM20, TNNT2) et des mutations nonsenses dans deux gènes nouvellement associés (TTN et BAG3), et je démontre que les mutations nonsenses influencent la maladie d'une manière différente des autres mutations causales. Je rapporte aussi une mutation dans un nouveau gène, FLNC, qui cause une forme rare et distincte de cardiomyopathie. Pour l'étude des traits complexes, dans le grand consortium Blood Cell Consortium (BCX), j'ai utilisé l’exomechip pour disséquer le rôle des variantes rares et communes dans les globules rouges et les plaquettes. J'ai identifié 16 nouvelles régions génomiques associées avec les globules rouges et 15 avec les plaquettes, parmi lesquelles se retrouvent plusieurs variantes de basses fréquences (MAP1A, HNF4A, ITGA2B, APOH), et j'ai démontré un chevauchement significatif de régions associées avec d'autres traits, incluant les lipides.
Mes résultats sur la DCM ont mis en évidence le rôle de plusieurs gènes candidats, et suggèrent un traitement différent au niveau de la gestion clinique des patients qui portent des mutations dans BAG3 et FLNC. En ce qui concerne les traits sanguins, mes résultats contribuent à enrichir le répertoire de régions associées avec ces traits, soulignant l'importance de l'utilisation de grands ensembles de données pour détecter les variantes rares ou de basses fréquences. La découverte de gènes dans les maladies rares et les traits complexes contribue à la compréhension des mécanismes sous-jacents qui ultimement favorisera de meilleurs diagnostics, gestions et traitements de maladies. / Genetic factors hold within them the answers to many questions we have on human traits, disease, and drug response among others. With time, the continuously advancing genetic tools have enabled us to examine those factors and provided and continue to provide astonishing answers. This thesis utilizes various methods of genetic tools such as exome sequencing and chip-based genotyping data in the context of both family and population-based analyses to interrogate the genetic factors that play a role in a rare disease, dilated cardiomyopathy (DCM), and in two complex traits, red blood cells and platelets.
DCM is a rare disease that is defined by a dilated left ventricle and systolic dysfunction. It is estimated that 30% of DCM cases are hereditary and more than 50 genes have been linked to play a role in the pathogenesis of DCM. Genetic screening of known genes is a gold standard tool in the clinical management of familial DCM. However, in the majority of probands, genetic testing fails to identify the causal mutation.
Blood cells play a variety of biological functions including oxygen transport, immunological functions, and wound healing. Levels of these cells and their associated indices are measured by a blood test, and deviation from optimal values may indicate certain disorders. Additionally, these traits are heavily studied in the context of cardiovascular disease (CVD) where different levels associate with a variable risk of CVD or are predictors of CVD complications or outcomes (for example, a higher level of white blood cells or lower level of hemoglobin).
I examined both DCM and blood cell traits and aimed to discover new mutations and variants that are associated with each. For DCM, I evaluated the value of whole exome
vi
sequencing in a clinical setting, and I report a number of novel mutations in candidate genes (DSP, LMNA, MYH7, MYPN, RBM20, TNNT2) and truncating mutations in two newly established genes, TTN and BAG3, and I demonstrate that truncating mutations in the latter influence disease differently than other causal mutations. I also report a mutation in a novel gene, FLNC that causes a rare and distinct form of cardiomyopathy. In examining complex traits, I dissected the role of common and rare variants in red blood cells and platelets within a large consortium, the Blood Cell Consortium (BCX) using the ExomeChip, and identified 16 novel loci associated with red blood cell traits and 15 with platelet traits, some of which harbored low-frequency variants (MAP1A, HNF4A, ITGA2B, APOH), and demonstrated a substantial overlap with other phenotypes predominantly lipids.
My results on DCM establish the role of a number of candidate genes in this disorder and suggest a different course of clinical management for patients that carry mutations in BAG3 and FLNC. As for blood cell traits, my results contributed to expanding the repertoire of loci associated with red blood cell and platelet traits and illustrate the importance of using large datasets to discover low-frequency or rare variants. Gene discovery in rare disease and complex traits gives insight into the underlying mechanisms which ultimately contributes to a better diagnosis, management, and treatment of disease.
|
Page generated in 0.0717 seconds