11 |
Egzotinių opcionų vertinimo specifika / Particularity of exotic options valuationMurauskaitė, Lina 27 June 2014 (has links)
Finansų inžinerijos dėka buvo sukurti egzotiniai opcionai, kurie patrauklūs investuotojams dėl didesnio nei standartiniai opcionai pelningumo ir nestandartizacijos. Pastaraisiais metais padidėjo užbiržinėje rinkoje prekiaujamų egzotinių opcionų likvidumas, dėl ko investuotojams jie tapo dar patrauklesni. Finansų institucijos, norėdamos pasiūlyti investuotojams geriausiai jų lūkesčius atitinkančius finansinius instrumentus, konkuruoja tarpusavyje dėl naujų egzotinių opcionų kūrimo. Egzotiniai opcionai gali būti kuriami ne tik akcijų, indeksų, palūkanų normų ar valiutų pagrindu, bet netgi realiai neegzistuojančio turto pagrindu. Dėl tokios egzotinių opcionų įvairovės kyla egzotinių opcionų vertinimo problema. Darbo objektas – egzotiniai opcionai kaip kintamos vertės išvestinės finansinės priemonės. Darbo tikslas – išnagrinėjus egzotinių opcionų savybes ir įkainojimo metodus, suformuoti modelį egzotinių opcionų vertinimui ir atlikti modelio parametrų jautrumo analizę. Mokslinės finansų literatūros analizė parodė, kad opcionai gali būti naudojami apsidraudimo nuo rizikos arba spekuliaciniais tikslais. Išnagrinėjusi opcionų savybes ir egzotinių opcionų klasifikacijas, autorė pasiūlė savo sukurtą egzotinių opcionų klasifikaciją, kuri priklauso nuo opciono charakteristikų. Išnagrinėjus mokslinę literatūrą nustatyta, kad vertinant opcionus svarbiausia atsižvelgti į opcionų vertę sudarančius parametrus: bazinio turto rinkos kainą bei jos kintamumą, vykdymo kainą, nerizikingą palūkanų... [toliau žr. visą tekstą] / Financial engineering have created exotic options that are more attractive to investors for more profitability than plain-vanilla options and non-standartization. Recently years have grown liquidity on OTC tradable options, and they became even more attractive for investors. Financial institutions compete for new exotic option creation, because they want to offer investors the best financial instruments for their expectations. Exotic options could be created not only on stocks, index, interest rates or currency bases, but even on not real-existed asset. There exists a problem of exotic options valuation, because there are a big variety of exotic options. The object of the study – exotic options as variable value derivatives. The purpose of the study – after analyse of characteristics and pricing methods of options, create a model for exotic options evaluation and make model parameters sensitivity analysis. The findings of the scholar finance literature pointed, that options could be used for hedging from risks or speculation. After analysis of options characteristics and exotic options classifications, authoress offer new exotic options classification, which depends on option characteristics. To summarize of scolar literature pointed, that the most important for valuing options is their parameters: strike price, underlying spot price and volatility, risk free rate, maturity and, if it is, dividens. After comparable analysis it emerged, that exotic options greeks functions... [to full text]
|
12 |
Lie group analysis of exotic options.Okelola, Michael. 19 June 2014 (has links)
Exotic options are derivatives which have features that makes them more complex
than vanilla traded products. Thus, finding their fair value is not always an easy
task. We look at a particular example of the exotic options - the power option - whose
payoffs are nonlinear functions of the underlying asset price. Previous analyses of
the power option have only obtained solutions using probability methods for the
case of the constant stock volatility and interest rate. Using Lie symmetry analysis
we obtain an optimal system of the Lie point symmetries of the power option PDE
and demonstrate an algorithmic method for finding solutions to the equation. In
addition, we find a new analytical solution to the asymmetric type of the power
option.
We also focus on the more practical and realistic case of time dependent parameters:
volatility and interest rate. Utilizing Lie symmetries, we are able to provide a new
exact solution for the terminal pay off case.
We also consider the power parameter of the option as a time dependent factor. A
new solution is once again obtained for this scenario. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2013.
|
13 |
An FFT network for lévy option pricing models.January 2009 (has links)
Guan, Peiqiu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (p. 67-71). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Literature Review --- p.6 / Chapter 2.1 --- Characteristic Function --- p.6 / Chapter 2.1.1 --- Definition --- p.6 / Chapter 2.1.2 --- Inverse Fourier Transform --- p.8 / Chapter 2.1.3 --- Fast Fourier Transform (FFT) --- p.9 / Chapter 2.2 --- Levy Processes --- p.13 / Chapter 2.2.1 --- Definition --- p.13 / Chapter 2.2.2 --- Levy-Khinchine Formula --- p.15 / Chapter 2.2.3 --- Levy Processes in Finance --- p.17 / Chapter 2.3 --- Exotic Options --- p.17 / Chapter 2.3.1 --- Barrier Options --- p.18 / Chapter 2.3.2 --- Lookback Options --- p.19 / Chapter 2.3.3 --- Asian Options --- p.20 / Chapter 3 --- FFT Network Model --- p.23 / Chapter 3.1 --- Weaknesses of Traditional Tree Approaches --- p.24 / Chapter 3.2 --- FFT Network Model --- p.30 / Chapter 3.3 --- Basic Transition Probability Matrix --- p.31 / Chapter 3.4 --- Basic FFT Network Pricing Algorithm --- p.35 / Chapter 3.4.1 --- Plain Vanilla Options --- p.35 / Chapter 4 --- FFT Network for Exotic Options --- p.38 / Chapter 4.1 --- Barrier Option Pricing --- p.38 / Chapter 4.2 --- Forward Shooting Grid --- p.41 / Chapter 4.3 --- FSG in FFT Network --- p.43 / Chapter 4.4 --- Lookback and Knock-in Options --- p.45 / Chapter 4.4.1 --- American Lookback Option Pricing Algorithm --- p.48 / Chapter 4.4.2 --- Knock-in American Option Pricing Algorithm --- p.50 / Chapter 4.5 --- Asian Option Pricing --- p.51 / Chapter 4.5.1 --- Asian Option Pricing Algorithm --- p.54 / Chapter 5 --- Numerical Implementation --- p.57 / Chapter 5.1 --- Numerical Scheme --- p.57 / Chapter 5.2 --- Numerical Result --- p.60 / Chapter 6 --- Conclusion --- p.65 / Bibliography --- p.67
|
14 |
Pricing, no-arbitrage bounds and robust hedging of installment optionsDavis, Mark, Schachermayer, Walter, Tompkins, Robert G. January 2000 (has links) (PDF)
An installment option is a European option in which the premium, instead of being paid up-front, is paid in a series of installments. If all installments are paid the holder receives the exercise value, but the holder has the right to terminate payments on any payment date, in which case the option lapses with no further payments on either side. We discuss pricing and risk management for these options, in particular the use of static hedges, and also study a continuous-time limit in which premium is paid at a certain rate per unit time. (author's abstract) / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
15 |
Exotické opce a jejich možné využití v investiční praxi / Exotic Options and their Feasible Usage as Investment InstrumentsŠitavanc, Jan January 2010 (has links)
Diplomová práce primárně řeší zda jsou exotické opce vhodné pro zajištění kurzových rizik a přináší návrh vhodné aplikace exotických opcí. Práce je zaměřena na úzkou skupinu exotických opcí, tzv. Path-Dependent opce. Tři často používané typy těchto opcí jsou analyzovány a testovány jak mezi sebou tak pro lepší porovnání i s klasickou vanilla opcí. Hlavním výstupem diplomové práce je návrh vhodného využití testovaných exotických opcí.
|
16 |
Pricing multi-asset options with levy copulasDushimimana, Jean Claude 03 1900 (has links)
Thesis (MSc (Mathematical Sciences))--University of Stellenbosch, 2011. / Imported from http://etd.sun.ac.za / ENGLISH ABSTRACT: In this thesis, we propose to use Levy processes to model the dynamics of asset prices. In
the first part, we deal with single asset options and model the log stock prices with a Levy
process. We employ pure jump Levy processes of infinite activity, in particular variance
gamma and CGMY processes. We fit the log-returns of six stocks to variance gamma and
CGMY distributions and check the goodness of fit using statistical tests. It is observed
that the variance gamma and the CGMY distributions fit the financial market data much
better than the normal distribution. Calibration shows that at given maturity time the
two models fit into the option prices very well.
In the second part, we investigate the effect of dependence structure to multivariate option
pricing. We use the new concept of Levy copula introduced in the literature by Tankov
[40]. Levy copulas allow us to separate the dependence structure from the behavior of
the marginal components. We consider bivariate variance gamma and bivariate CGMY
models. To model the dependence structure between underlying assets we use the Clayton
Levy copula. The empirical results on six stocks indicate a strong dependence between
two different stock prices. Subsequently, we compute bivariate option prices taking into
account the dependence structure. It is observed that option prices are highly sensitive to
the dependence structure between underlying assets, and neglecting tail dependence will
lead to errors in option pricing. / AFRIKAANSE OPSOMMING: In hierdie proefskrif word Levy prosesse voorgestel om die bewegings van batepryse te
modelleer. Levy prosesse besit die vermoe om die risiko van spronge in ag te neem, asook
om die implisiete volatiliteite, wat in finansiele opsie pryse voorkom, te reproduseer. Ons
gebruik suiwer–sprong Levy prosesse met oneindige aktiwiteit, in besonder die gamma–
variansie (Eng. variance gamma) en CGMY–prosesse. Ons pas die log–opbrengste van ses
aandele op die gamma–variansie en CGMY distribusies, en kontroleer die resultate met
behulp van statistiese pasgehaltetoetse. Die resultate bevestig dat die gamma–variansie en
CGMY modelle die finansiele data beter pas as die normaalverdeling. Kalibrasie toon ook
aan dat vir ’n gegewe verstryktyd die twee modelle ook die opsiepryse goed pas.
Ons ondersoek daarna die gebruik van Levy prosesse vir opsies op meervoudige bates.
Ons gebruik die nuwe konsep van Levy copulas, wat deur Tankov[40] ingelei is. Levy
copulas laat toe om die onderlinge afhanklikheid tussen bateprysspronge te skei van die
randkomponente. Ons bespreek daarna die simulasie van meerveranderlike Levy prosesse
met behulp van Levy copulas. Daarna bepaal ons die pryse van opsies op meervoudige bates
in multi–dimensionele exponensiele Levy modelle met behulp van Monte Carlo–metodes.
Ons beskou die tweeveranderlike gamma-variansie en – CGMY modelle en modelleer die
afhanklikheidsstruktuur tussen onderleggende bates met ’n Levy Clayton copula. Daarna
bereken ons tweeveranderlike opsiepryse. Kalibrasie toon aan dat hierdie opsiepryse baie
sensitief is vir die afhanlikheidsstruktuur, en dat prysbepaling foutief is as die afhanklikheid
tussen die sterte van die onderleggende verdelings verontagsaam word.
|
17 |
Calibration and Model Risk in the Pricing of Exotic Options Under Pure-Jump Lévy DynamicsMboussa Anga, Gael 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015 / AFRIKAANSE OPSOMMING : Die groeiende belangstelling in kalibrering en modelrisiko is ’n redelik resente ontwikkeling
in finansiële wiskunde. Hierdie proefskrif fokusseer op hierdie sake, veral in
verband met die prysbepaling van vanielje-en eksotiese opsies, en vergelyk die prestasie
van verskeie Lévy modelle. ’n Nuwe metode om modelrisiko te meet word ook voorgestel
(hoofstuk 6). Ons kalibreer eers verskeie Lévy modelle aan die log-opbrengs van die
S&P500 indeks. Statistiese toetse en grafieke voorstellings toon albei aan dat suiwer
sprongmodelle (VG, NIG en CGMY) die verdeling van die opbrengs beter beskryf as
die Black-Scholes model. Daarna kalibreer ons hierdie vier modelle aan S&P500 indeks
opsie data en ook aan "CGMY-wˆ ereld" data (’n gesimuleerde wÃłreld wat beskryf word
deur die CGMY-model) met behulp van die wortel van gemiddelde kwadraat fout. Die
CGMY model vaar beter as die VG, NIG en Black-Scholes modelle. Ons waarneem
ook ’n effense verskil tussen die nuwe parameters van CGMY model en sy wisselende
parameters, ten spyte van die feit dat CGMY model gekalibreer is aan die "CGMYwêreld"
data. Versperrings-en terugblik opsies word daarna geprys, deur gebruik te
maak van die gekalibreerde parameters vir ons modelle. Hierdie pryse word dan vergelyk
met die "ware" pryse (bereken met die ware parameters van die "CGMY-wêreld), en
’n beduidende verskil tussen die modelpryse en die "ware" pryse word waargeneem.
Ons eindig met ’n poging om hierdie modelrisiko te kwantiseer / ENGLISH ABSTRACT : The growing interest in calibration and model risk is a fairly recent development in
financial mathematics. This thesis focussing on these issues, particularly in relation to
the pricing of vanilla and exotic options, and compare the performance of various Lévy
models. A new method to measure model risk is also proposed (Chapter 6). We calibrate
only several Lévy models to the log-return of S&P500 index data. Statistical tests
and graphs representations both show that pure jump models (VG, NIG and CGMY) the
distribution of the proceeds better described as the Black-Scholes model. Then we calibrate
these four models to the S&P500 index option data and also to "CGMY-world" data
(a simulated world described by the CGMY model) using the root mean square error.
Which CGMY model outperform VG, NIG and Black-Scholes models. We observe also a
slight difference between the new parameters of CGMY model and its varying parameters,
despite the fact that CGMY model is calibrated to the "CGMY-world" data. Barriers
and lookback options are then priced, making use of the calibrated parameters for our
models. These prices are then compared with the "real" prices (calculated with the true
parameters of the "CGMY world), and a significant difference between the model prices
and the "real" rates are observed. We end with an attempt to quantization this model
risk.
|
18 |
Exotické opcie (Digitály a bariery) / Exotic Options (Digitals and Barriers)Fečko, Michal January 2008 (has links)
Main objective of this diploma thesis is to point out to the advantages related to the applications of Exotic options and show that we have to be aware of complexities which arise in hedging such products. There exists a quantity of different Exotic options products so the first chapter is dedicated to its basic classification, although not all instruments were included, as some are very specific. According to the application of options, we took out the most used Exotic options. The number one in the Exotic options world, are the Barrier options, followed by Digital options
|
19 |
Aspects of some exotic optionsTheron, Nadia 12 1900 (has links)
Thesis (MComm (Statistics and Actuarial Science))--University of Stellenbosch, 2007. / The use of options on various stock markets over the world has introduced a unique opportunity for investors to hedge, speculate, create synthetic financial instruments and reduce funding and other costs in their trading strategies.
The power of options lies in their versatility. They enable an investor to adapt or adjust her position according to any situation that arises. Another benefit of using options is that they provide leverage. Since options cost less than stock, they provide a high-leverage approach to trading that can significantly limit the overall risk of a trade, or provide additional income. This versatility and leverage, however, come at a price. Options are complex securities and can be extremely risky.
In this document several aspects of trading and valuing some exotic options are investigated. The aim is to give insight into their uses and the risks involved in their trading. Two volatility-dependent derivatives, namely compound and chooser options; two path-dependent derivatives, namely barrier and Asian options; and lastly binary options, are discussed in detail.
The purpose of this study is to provide a reference that contains both the mathematical derivations and detail in valuating these exotic options, as well as an overview of their applicability and use for students and other interested parties.
|
20 |
Precificação de opções exóticas utilizando CUDA / Exotic options pricing using CUDACalderaro, Felipe Boteon 17 October 2017 (has links)
No mercado financeiro, a precificação de contratos complexos muitas vezes apoia-se em técnicas de simulação numérica. Estes métodos de precificação geralmente apresentam baixo desempenho devido ao grande custo computacional envolvido, o que dificulta a análise e a tomada de decisão por parte do trader. O objetivo deste trabalho é apresentar uma ferramenta de alto desempenho para a precificação de instrumentos financeiros baseados em simulações numéricas. A proposta é construir uma calculadora eficiente para a precificação de opções multivariadas baseada no método de Monte Carlo, utilizando a plataforma CUDA de programação paralela. Serão apresentados os conceitos matemáticos que embasam a precificação risco-neutra, tanto no contexto univariado quanto no multivariado. Após isso entraremos em detalhes sobre a implementação da simulação Monte Carlo e a arquitetura envolvida na plataforma CUDA. No final, apresentaremos os resultados obtidos comparando o tempo de execução dos algoritmos. / In the financial market, the pricing of complex contracts often relies on numerical simulation techniques. These pricing methods generally present poor performance due to the large computational cost involved, which makes it difficult for the trader to analyze and make decisions. The objective of this work is to present a high performance tool for the pricing of financial instruments based on numerical simulations. The proposal is to present an efficient calculator for the pricing of multivariate options based on the Monte Carlo method, using the parallel programming CUDA platform. The mathematical concepts underlying risk-neutral pricing, both in the univariate and in the multivariate context, will be presented. After this we will detail the implementation of the Monte Carlo simulation and the architecture involved in the CUDA platform. At the end, we will present the results obtained comparing the execution time of the algorithms.
|
Page generated in 0.1149 seconds