1 |
Effective Design and Control of Full Depth Reclaimed PavementsSalah, Peter 25 July 2013 (has links)
The traditional method of repairing damaged roads in Atlantic Canada has been to place a hot mix asphalt overlay over the existing road. Though this method provides a new, smooth wearing surface to drive on, it is merely a short term fix. With time, the cracks in the original pavement will reflect to the surface of the new pavement, resulting in failure of the overlay. An alternative option gaining more prominence is the use of a Full Depth Reclamation (FDR) technique, which involves pulverizing the flexible pavement, along with a portion of the underlying layer. This material is then stabilized and recompacted to produce a new base layer that is free of damage.
Though FDR has been used for a number of years, there are still problems with variability in the strength of the materials in some projects. It is hypothesized that some of these problems are due to variability and poor quality in the reclaimed materials. It is believed that current pulverization methods contribute to the variability being observed in these materials. Two FDR projects employing different pulverization control methods were studied to examine how the consistency of the reclaimed materials can be improved through the use of a Ground Penetrating Radar (GPR) survey to map the variability in the depth of the pavement. Controlling the thickness ratio of asphalt concrete to granular base materials being pulverized was shown to improve the consistency of materials, properties, and performance.
The second phase of this research project studied how improving the gradation of the reclaimed materials with the addition of a crusher dust might result in improved performance of stabilized base materials, in this case stabilized with expanded asphalt. The effect of construction variability on the improved materials was also studied by varying both the moisture content, and asphalt content from optimum conditions, as might be expected during construction. Results indicated that the quality of the stabilized FDR materials can be significantly improved by bringing the material gradation closer to the theoretical maximum density gradation. The performance of the stabilized materials can be affected by both the mixing moisture content, and the asphalt content used during stabilization. This suggests that effective quality control, and stricter specifications on the constructed product would result in more reliable, effective FDR pavements. / A study on the control of the consistency of pulverized FDR materials, as well as a study examining how to improve the performance of these pulverized materials.
|
2 |
COLD IN-PLACE RECYCLING WITH EXPANDED ASPHALT MIX (CIREAM)Abiodun, Samuel 16 April 2014 (has links)
Cold in-place recycling with expanded asphalt mix (CIREAM) has become an accepted road rehabilitation technique in Ontario and other parts of the world given its advantages over regular cold in-place recycling (CIR) and other methods. Although CIREAM offers early strength advantages and extended paving periods among other benefits, late season CIREAM can be burdened by distresses such as ravelling, potholing and other moisture-induced damage. Limited information on the behaviour and failure mechanisms of CIREAM has also hindered its utilization in spite of the numerous benefits.
This research investigated effects of additives on foam properties of roofing asphalt flux (RAF) binder in order to evaluate the suitability of the binder for CIREAM. The study also investigated how mixture variables and test protocols affect performance properties that relate to early strength and moisture resistance of CIREAM versus CIR. Indirect tensile strength testing with moisture conditioning was used to assess the effects of asphalt cement type (80, 300 pen grades and polymer modified asphalt), conditioning time, and additives such as Portland cement, foam stabilizers, polymers and fibers. Uniaxial cyclic compression with partial confinement was used to assess effect of additives on deformation resistance of recycled mixes. Although a siloxane-based stabilizer significantly improved the stability of RAF foam, the binder may not be suitable for CIREAM due to its limited expansion. The optimum binder content was found to be around 2 percent, which is significantly higher than the minimum 1 percent currently used in Ontario. Both Portland cement and the siloxane additive exerted significant positive effects on strength behaviour and moisture resistance of the recycled mixes. In regular CIR mixes, 2 percent binder content gave desirable early strength and strain performance compared to 1 percent.
Application of controlled amounts of additives (e.g. Portland cement, foam stabilizers) and case-by-case evaluation can improve the performance properties of CIREAM and address the associated problems. The entire research effort described in this thesis was designed to provide advice on potential improvements in the CIREAM process as it is currently carried out in Ontario, and also help in developing quality control standards in CIREAM and other cold mix processes. / Thesis (Master, Chemistry) -- Queen's University, 2014-04-16 08:42:24.313
|
3 |
THICKNESS VARIABILITY EFFECTS ON THE PROPERTIES OF UNSTABILIZED FULL DEPTH RECLAIMED AGGREGATESHaque, Rizwana 14 March 2014 (has links)
Inadequate financial allocation for road maintenance is a threat to the impaired rural highways in Atlantic Canada. The conventional means of pavement rehabilitation has been to place a hot mix asphalt concrete overlay on the existing worn out pavement which is only a short term adjustment. The purpose is to provide a smooth wearing surface at a low cost. This traditional way of pavement repair does not fix the damage embedded within the pavement structure. After a certain extent of time the cracks in the original pavement start to reflect to the smooth new wearing surface, causing deterioration on the overlay. The advanced approach which is becoming more popular is the application of Full Depth Reclamation (FDR). This technique helps to repair the extensively defective roads by pulverizing the flexible pavement along with a fraction of the underlying damaged base layer. Thus a damage free base layer can be obtained by stabilizing and recompacting the pulverized materials. FDR is a sustainable and an environmentally beneficial repair method as it re-uses the in-situ materials.
FDR process has been used around the world for over 25 years yet confronts some difficulties regarding the fluctuation in the strength of materials in various projects. It is inferred that some of these difficulties are due to the variability and poor quality in the restored materials. The variability in the recycled base layer is a result of currently utilizing a retroactive depth control method to attain a specific blend of asphalt concrete to granular base for the pulverized materials. Two FDR projects applying two different pulverization control methods (conventional retroactive and GPR depth control methods) were analyzed to investigate the improvements in consistency of the restored materials by using Ground Penetrating Radar (GPR). A wide range of asphalt concrete/base layer blend ratio was detected in retroactive control section, while consistent blend ratio was maintained in GPR survey by mapping the variability in the depth of pavement and sub-dividing the test sections accordingly.
A GPR controlled constant blend ratio during pulverization displayed improvements in consistency of materials, physical and mechanical properties and performance as anticipated. The materials obtained by using the conventional retroactive depth control method exhibited higher variability in grain size distribution, optimum moisture content, optimum density, California Bearing Ratio, resilient modulus and shear strength. All materials from both projects exhibited excessive air voids and inadequate fines content as the as-obtained particles acted as conglomerated particles and enough fines were not generated after the pulverization. It is recommended that efficient quality control, precise specifications and appropriate pulverization methods will provide more reliable and impressive FDR pavements. / This thesis contains research on unstabilized full depth reclaimed aggregates properties
|
Page generated in 0.0721 seconds