21 |
Optimal portfolio selection under Expected Shortfall optimisation with Random Matrix Theory denoising / Optimal portfolio selection under Expected Shortfall optimisation with Random Matrix Theory denoisingŠíla, Jan January 2018 (has links)
This thesis challenges several concepts in finance. Firstly, it is the Markowitz's solution to the portfolio problem. It introduces a new method which de- noises the covariance matrix - the cornerstone of the portfolio management. Random Matrix Theory originates in particle physics and was recently intro- duced to finance as the intersection between economics and natural sciences has widened over the past couple of years. Often discussed Efficient Market Hypothesis is opposed by adopting the assumption, that financial returns are driven by Paretian distributions, in- stead of Gaussian ones, as conjured by Mandelbrot some 50 years ago. The portfolio selection is set in a framework, where Expected Shortfall replaces the standard deviation as the risk measure. Therefore, direct optimi- sation of the portfolio is implemented to be compared with the performance of the classical solution and its denoised counterpart. The results are evalu- ated in a controlled environment of Monte Carlo simulation as well as using empirical data from S&P 500 constituents. 1
|
22 |
The influence of consolidation and internationalization on systemic risk in the financial sectorBakker, Rinke January 2018 (has links)
This paper analyses the impact of banking mergers on systemic risk, with in particular if internationalization prior to acquisition increases systemic risk. By using the marginal expected shortfall methodology for an international sample of mergers, a significant increase in systemic risk is found as a result of mergers in the financial sector. Moreover, if a bank is operating internationally prior to acquisition, this increases systemic risk. Additionally, there is evidence of a too-big-to-fail motive for relatively smaller banks to use mergers to become systemically important. The results confirm that consolidation in the financial sector increases fragility of the financial system.
|
23 |
Portfolio risk measures and option pricing under a Hybrid Brownian motion modelMbona, Innocent January 2017 (has links)
The 2008/9 financial crisis intensified the search for realistic return models, that capture
real market movements. The assumed underlying statistical distribution of financial returns
plays a crucial role in the evaluation of risk measures, and pricing of financial instruments.
In this dissertation, we discuss an empirical study on the evaluation of the traditional
portfolio risk measures, and option pricing under the hybrid Brownian motion model, developed
by Shaw and Schofield. Under this model, we derive probability density functions
that have a fat-tailed property, such that “25-sigma” or worse events are more probable. We then
estimate Value-at-Risk (VaR) and Expected Shortfall (ES) using four equity stocks listed on
the Johannesburg Stock Exchange, including the FTSE/JSE Top 40 index. We apply the historical
method and Variance-Covariance method (VC) in the valuation of VaR. Under the VC
method, we adopt the GARCH(1,1) model to deal with the volatility clustering phenomenon.
We backtest the VaR results and discuss our findings for each probability density function.
Furthermore, we apply the hybrid model to price European style options. We compare the
pricing performance of the hybrid model to the classical Black-Scholes model. / Dissertation (MSc)--University of Pretoria, 2017. / National Research Fund (NRF), University of Pretoria Postgraduate bursary and the General
Studentship bursary / Mathematics and Applied Mathematics / MSc / Unrestricted
|
24 |
Backtesting Expected Shortfall: the design and implementation of different backtests / Validering av Expected Shortfall: design och tillämpning av olika metoderWimmerstedt, Lisa January 2015 (has links)
In recent years, the question of whether Expected Shortfall is possible to backtest has been a hot topic after the findings of Gneiting in 2011 that Expected Shortfall lacks a mathematical property called elicitability. However, new research has indicated that backtesting of Expected Shortfall is in fact possible and that it does not have to be very difficult. The purpose of this thesis is to show that Expected Shortfall is in fact backtestable by providing six different examples of how a backtest could be designed without exploiting the property of elicitability. The different approaches are tested and their performances are compared against each other. The material can be seen as guidance on how to think in the initial steps of the implementation of an Expected Shortfall backtest in practice. / De senaste åren har frågan om huruvida det är möjligt att hitta backtester som validerar Expected Shortfall varit ett omdiskuterat ämne efter att Gneiting 2011 visade att Expected Shortfall saknade den matematiska egenskapen som kallas elicitabilitet. Ny forskning tyder på att det går att validera Expected Shortfall och att det inte behöver vara alltför svårt. Syftet med den här uppsatsen är att visa att det går att hitta metoder som backtestar Expected Shortfall. Vi gör det genom att visa utförandet av sex olika metoder som validerar Expected Shortfall utan att använda sig av elicitabilitet. De olika metoderna testas och deras egenskaper jämförs mot varandra. Materialet kan ses som en guide i hur man ska tänka i de första stegen i implementeringen av en metod för att backtesta Expected Shortfall.
|
25 |
Estimating expected shortfall using an unconditional peaks-over-threshold method under an extreme value approachWahlström, Rikard January 2021 (has links)
Value-at-Risk (VaR) has long been the standard risk measure in financial risk management. However, VaR suffers from critical shortcomings as a risk measure when it comes to quantifying the most severe risks, which was made especially apparent during the financial crisis of 2007–2008. An alternative risk measure addressing the shortcomings of VaR known as expected shortfall (ES) is gaining popularity and is set to replace VaR as the standard measure of financial risk. This thesis introduces how extreme value theory can be applied in estimating ES using an unconditional peaks-over-threshold method. This includes giving an introduction to the theoretical foundations of the method. An application of this method is also performed on five different assets. These assets are chosen to serve as a proxy for the more broad asset classes of equity, fixed income, currencies, commodities and cryptocurrencies. In terms of ES, we find that cryptocurrencies is the riskiest asset and fixed income the safest.
|
26 |
Empirical Analysis of Joint Quantile and Expected Shortfall Regression BacktestsÅgren, Viktor January 2023 (has links)
In this work, we look into the practical applicability of three joint quantile and expected shortfall regression backtests. The strict, auxiliary, and intercept ESR backtests are applied to the historical log returns of the OMX Stockholm 30 market-weight price index. We estimate the conditional variance using GARCH models for various rolling window lengths and refitting frequencies. We are particularly interested in the rejection rates of the one-sided intercept ESR backtest as it is comparable to the current standard of backtests. The one-sided test is found to perform well when the conditional variance is estimated by either the GARCH(1,1), GJR-GARCH(1,1), or EGARCH(1,1) coupled with student’s t-innovation residuals and a rolling window size of 1000 days.
|
27 |
Backtesting Expected Shortfall : A qualitative study for central counterparty clearingBerglund, Emil, Markgren, Albin January 2022 (has links)
Within Central Counterparty Clearing, the Clearing House collects Initial Margin from its Clearing Members. The Initial Margin can be calculated in many ways, one of which is by applying the commonly used risk measure Value-at-Risk. However, Value-at-Risk has one major flaw, namely its inability to encapsulate Tail Risk. Due to this, there has for long been a desire to replace Value-at-Risk with Expected Shortfall, another risk measure that has shown to be much better suited to encapsulate Tail Risk. That said, Value-at-Risk is still used over Expected Shortfall, something which is mainly due to the fact that there is no consensus regarding how one should backtest Expected Shortfall. The goal of this thesis is to evaluate some of the most commonly proposed methods for backtesting Expected Shortfall. In doing this, several non-parametric backtests of Expected Shortfall are investigated using simulated data as well as market data from different types of securities. Moreover, this thesis aims to shed some light on the differences between Value-at-Risk and Expected Shortfall, highlighting why a change of risk measure is not as straightforward as one might believe. From the investigations of the thesis, several backtests are found to be sufficient for backtesting the Initial Margin with Expected Shortfall as the risk measure, the so called Minimally Biased Relative backtest showing the overall best performance of the looked at backtests. Further, the thesis visualizes how Value-at-Risk and Expected Shortfall are two risk measures that are inherently different in a real-world setting, emphasizing how one should be careful making conversions between the two based upon parametric assumptions.
|
28 |
Estimação de medidas de risco utilizando modelos CAViaR e CARE / Risk measures estimation using CAViaR and CARE models.Silva, Francyelle de Lima e 06 August 2010 (has links)
Neste trabalho são definidos, discutidos e estimados o Valor em Risco e o Expected Shortfall. Estas são medidas de Risco Financeiro de Mercado muito utilizadas por empresas e investidores para o gerenciamento do risco, aos quais podem estar expostos. O objetivo foi apresentar e utilizar vários métodos e modelos para a estimação dessas medidas e estabelecer qual o modelo mais adequado dentro de determinados cenários. / In this work Value at Risk and Expected Shortfall are defined, discussed and estimated . These are measures heavily used in Financial Market Risk, in particular by companies and investors to manage risk, which they may be exposed. The aim is to present and use several methods and models for estimating those measures and to establish which model is most appropriate in certain scenarios.
|
29 |
Estimação de medidas de risco utilizando modelos CAViaR e CARE / Risk measures estimation using CAViaR and CARE models.Francyelle de Lima e Silva 06 August 2010 (has links)
Neste trabalho são definidos, discutidos e estimados o Valor em Risco e o Expected Shortfall. Estas são medidas de Risco Financeiro de Mercado muito utilizadas por empresas e investidores para o gerenciamento do risco, aos quais podem estar expostos. O objetivo foi apresentar e utilizar vários métodos e modelos para a estimação dessas medidas e estabelecer qual o modelo mais adequado dentro de determinados cenários. / In this work Value at Risk and Expected Shortfall are defined, discussed and estimated . These are measures heavily used in Financial Market Risk, in particular by companies and investors to manage risk, which they may be exposed. The aim is to present and use several methods and models for estimating those measures and to establish which model is most appropriate in certain scenarios.
|
30 |
Robust portfolio optimization with Expected Shortfall / Robust portföljoptimering med ESIsaksson, Daniel January 2016 (has links)
This thesis project studies robust portfolio optimization with Expected Short-fall applied to a reference portfolio consisting of Swedish linear assets with stocks and a bond index. Specifically, the classical robust optimization definition, focusing on uncertainties in parameters, is extended to also include uncertainties in log-return distribution. My contribution to the robust optimization community is to study portfolio optimization with Expected Shortfall with log-returns modeled by either elliptical distributions or by a normal copula with asymmetric marginal distributions. The robust optimization problem is solved with worst-case parameters from box and ellipsoidal un-certainty sets constructed from historical data and may be used when an investor has a more conservative view on the market than history suggests. With elliptically distributed log-returns, the optimization problem is equivalent to Markowitz mean-variance optimization, connected through the risk aversion coefficient. The results show that the optimal holding vector is almost independent of elliptical distribution used to model log-returns, while Expected Shortfall is strongly dependent on elliptical distribution with higher Expected Shortfall as a result of fatter distribution tails. To model the tails of the log-returns asymmetrically, generalized Pareto distributions are used together with a normal copula to capture multivariate dependence. In this case, the optimization problem is not equivalent to Markowitz mean-variance optimization and the advantages of using Expected Shortfall as risk measure are utilized. With the asymmetric log-return model there is a noticeable difference in optimal holding vector compared to the elliptical distributed model. Furthermore the Expected Shortfall in-creases, which follows from better modeled distribution tails. The general conclusions in this thesis project is that portfolio optimization with Expected Shortfall is an important problem being advantageous over Markowitz mean-variance optimization problem when log-returns are modeled with asymmetric distributions. The major drawback of portfolio optimization with Expected Shortfall is that it is a simulation based optimization problem introducing statistical uncertainty, and if the log-returns are drawn from a copula the simulation process involves more steps which potentially can make the program slower than drawing from an elliptical distribution. Thus, portfolio optimization with Expected Shortfall is appropriate to employ when trades are made on daily basis. / Examensarbetet behandlar robust portföljoptimering med Expected Shortfall tillämpad på en referensportfölj bestående av svenska linjära tillgångar med aktier och ett obligationsindex. Specifikt så utvidgas den klassiska definitionen av robust optimering som fokuserar på parameterosäkerhet till att även inkludera osäkerhet i log-avkastningsfördelning. Mitt bidrag till den robusta optimeringslitteraturen är att studera portföljoptimering med Expected Shortfall med log-avkastningar modellerade med antingen elliptiska fördelningar eller med en norma-copul med asymmetriska marginalfördelningar. Det robusta optimeringsproblemet löses med värsta tänkbara scenario parametrar från box och ellipsoid osäkerhetsset konstruerade från historiska data och kan användas när investeraren har en mer konservativ syn på marknaden än vad den historiska datan föreslår. Med elliptiskt fördelade log-avkastningar är optimeringsproblemet ekvivalent med Markowitz väntevärde-varians optimering, kopplade med riskaversionskoefficienten. Resultaten visar att den optimala viktvektorn är nästan oberoende av vilken elliptisk fördelning som används för att modellera log-avkastningar, medan Expected Shortfall är starkt beroende av elliptisk fördelning med högre Expected Shortfall som resultat av fetare fördelningssvansar. För att modellera svansarna till log-avkastningsfördelningen asymmetriskt används generaliserade Paretofördelningar tillsammans med en normal-copula för att fånga det multivariata beroendet. I det här fallet är optimeringsproblemet inte ekvivalent till Markowitz väntevärde-varians optimering och fördelarna med att använda Expected Shortfall som riskmått används. Med asymmetrisk log-avkastningsmodell uppstår märkbara skillnader i optimala viktvektorn jämfört med elliptiska fördelningsmodeller. Därutöver ökar Expected Shortfall, vilket följer av bättre modellerade fördelningssvansar. De generella slutsatserna i examensarbetet är att portföljoptimering med Expected Shortfall är ett viktigt problem som är fördelaktigt över Markowitz väntevärde-varians optimering när log-avkastningar är modellerade med asymmetriska fördelningar. Den största nackdelen med portföljoptimering med Expected Shortfall är att det är ett simuleringsbaserat optimeringsproblem som introducerar statistisk osäkerhet, och om log-avkastningar dras från en copula så involverar simuleringsprocessen flera steg som potentiellt kan göra programmet långsammare än att dra från en elliptisk fördelning. Därför är portföljoptimering med Expected Shortfall lämpligt att använda när handel sker på daglig basis.
|
Page generated in 0.0518 seconds