1 |
A note on intelligent exploration of semantic dataThakker, Dhaval, Schwabe, D., Garcia, D., Kozaki, K., Brambilla, M., Dimitrova, V. 15 July 2019 (has links)
Yes / Welcome to this special issue of the Semantic Web (SWJ) journal. The special issue compiles three technical contributions
that significantly advance the state-of-the-art in exploration of semantic data using semantic web techniques and technologies.
|
2 |
A Relation/Topic-Based Visualisation to Aid Exploratory Search in Large Collections / A Relation/Topic-Based Visualisation to Aid Exploratory Search in Large CollectionsHerrmannová, Drahomíra January 2012 (has links)
This MSc Thesis was performed during a special practice at The Open University, Milton Keynes, UK. In recent years a number of new approaches for visualising and browsing document collections have been developed. These approaches try to address the problems associated with the growing amounts of content available and the changing patterns in the way people interact with information. Users now demand better support for exploring document collections to discover connections, compare and contrast information. Although visual search interfaces have the potential to improve the user experience in exploring document collections compared to textual search interfaces, they have not yet become as popular among users. The reasons for this range from the design of such visual interfaces to the way these interfaces are implemented and used. This work studies these reasons and determines the factors that contribute to an improved visual browsing experience. Consequently, by taking these factors into account, a novel visual search interface that improves exploratory search and the discovery of document relations is designed, implemented and evaluated.
|
3 |
EXPLORATORY SEARCH USING VECTOR MODEL AND LINKED DATADaeun Yim (9143660) 30 July 2020 (has links)
The way people acquire knowledge has largely shifted from print to web resources. Meanwhile, search has become the main medium to access information. Amongst various search behaviors, exploratory search represents a learning process that involves complex cognitive activities and knowledge acquisition. Research on exploratory search studies on how to make search systems help people seek information and develop intellectual skills. This research focuses on information retrieval and aims to build an exploratory search system that shows higher clustering performance and diversified search results. In this study, a new language model that integrates the state-of-the-art vector language model (i.e., BERT) with human knowledge is built to better understand and organize search results. The clustering performance of the new model (i.e., RDF+BERT) was similar to the original model but slight improvement was observed with conversational texts compared to the pre-trained language model and an exploratory search baseline. With the addition of the enrichment phase of expanding search results to related documents, the novel system also can display more diverse search results.
|
4 |
[en] CONTEXT AUGMENTED KNOWLEDGE GRAPHS FOR DECISION-MAKING SCENARIOS / [pt] GRAFOS DE CONHECIMENTO ENRIQUECIDOS DE CONTEXTO PARA CENÁRIOS DE TOMADA DE DECISÃOVERONICA DOS SANTOS 03 June 2024 (has links)
[pt] Em cenários de tomada de decisão, quando um agente, humano ou máquina, necessita de mais conhecimento para decidir devido a uma lacuna de conhecimento, surge uma necessidade de informação. Os usuários podem conscientemente tomar a iniciativa de adquirir conhecimento para preencher essa lacuna através de tarefas de buscas por informação. As consultas do usuário podem ser incompletas, imprecisas e ambíguas. Isso ocorre porque parte da informação necessária está implícita ou porque o usuário não compreende totalmente o domínio ou a tarefa que motiva a busca. Esta condição está prevista nas abordagens de busca exploratória. Embora os Grafos de Conhecimento (KG) sejam reconhecidos como fontes de informação com grande potencial para integração de dados e busca exploratória, eles são incompletos por natureza. Além disso, KGs Crowdsourced, ou KGs construídos pela integração de diversas fontes de informação de qualidade variável, precisam de uma Camada de Confiança para serem eficazes no suporte a processos de tomada de decisão. A avaliação da veracidade do conhecimento depende dos contextos das alegações e das tarefas a serem realizadas ou pretendidas (propósito). Esta pesquisa tem como objetivo preparar e consultar KGs para apoiar a exploração ciente de contexto em cenários de tomada de decisão. As contribuições incluem uma arquitetura para sistemas de apoio à decisão, composta por uma Camada de Decisão, uma Camada de Confiança e uma Camada de Conhecimento que opera sob a hipótese de Mundo Aberto Dual. A Camada de Conhecimento é composta por um Grafo de Conhecimento enriquecido de Contexto (CoaKG) e uma Máquina de Consulta baseada em CoaKG. CoaKG estende um KG padrão com mapeamentos de contexto para identificar o contexto explicitamente representado e regras para inferir o contexto implícito. A máquina de Consulta baseada em CoaKG foi projetada como uma abordagem de resposta a consultas que recupera todas as respostas contextualizadas (possíveis). A Wikidata é objeto de uma Prova de Conceito para avaliar a eficácia da Camada de Conhecimento. / [en] In decision-making scenarios, an information need arises when an agent,
human, or machine needs more knowledge to decide due to a knowledge gap.
Users can consciously take the initiative to acquire knowledge to fill this gap
through information search tasks. User queries can be incomplete, inaccurate,
and ambiguous. It occurs because part of the information needed is implicit
or because the user does not fully understand the domain or the task that
motivates the search. This condition is foreseen within the exploratory search
approaches. Although Knowledge Graphs (KG) are recognized as information
sources with great potential for data integration and exploratory search, they
are incomplete by nature. Besides, Crowdsourced KGs, or KGs constructed
by integrating several different information sources of varying quality, need
a Trust Layer to be effective. The evaluation of knowledge truthfulness
depends upon the contexts of claims and tasks being carried out or intended
(purpose). This research aims to prepare and query KGs to support context-aware exploration in decision-making scenarios. The contributions include a
framework for Context Augmented Knowledge Graphs-based Decision Support
Systems composed of a Decision Layer, a Trust Layer, and a Knowledge Layer
that operates under a Dual Open World Assumption. The Knowledge Layer
comprises a Context Augmented KG (CoaKG) and a CoaKG Query Engine.
CoaKG contains contextual mappings to identify explicit context and rules to
infer implicit context. CoaKG Query Engine is designed as a query-answering
approach that retrieves all contextualized (possible answers) from the CoaKG.
Wikidata is the object of a Proof of Concept to evaluate the effectiveness of
the Knowledge Layer.
|
5 |
SearchViz: An Interactive Visual Interface to Navigate Search-Results in Online Discussion ForumsJanuary 2015 (has links)
abstract: Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach by using interactive network visualization to represent relevant search results for online programming discussion forums.
I conducted user study to evaluate the effectiveness of this approach. Results show that users were able to identify relevant information more precisely via visual interface as compared to traditional list based approach. Network visualization demonstrated effective search-result navigation support to facilitate user’s tasks and improved query quality for successive queries. Subjective evaluation also showed that visualizing search results conveys more semantic information in efficient manner and makes searching more effective. / Dissertation/Thesis / Masters Thesis Computer Science 2015
|
6 |
Konsten att skapa den lilla innovativa världen : Hur företag driver fram hållbara innovationer / The art of creating a small innovative world : The how of sustainable innovationsAndersson, Emma, Arndt, Viktoria January 2018 (has links)
Bakgrund: Den tilltagande oron för vår planets välmående har medfört ett ökat samhällsfokus på hållbar utveckling. Det är av vikt att företag engagerar sig i hållbar utveckling delvis eftersom de orsakar många hållbarhetsrelaterade problem, och delvis eftersom de har de resurser som krävs för att lösa problemen. För att påverka hållbar utveckling behöver företag driva fram hållbara innovationer för att förändra deras produkter, processer och affärsmodeller. Forskningsfältet gällande hållbara innovationer är dock i en initial uppbyggnadsfas, och därmed behövs fler studier. Framförallt är forskningsområdet i behov av fler kvalitativa studier som belyser hur hållbara innovationer utvecklas på företagsnivå. Syfte: Syftet med uppsatsen är att öka förståelsen för hur hållbarhet införlivas i företags innovationsprocesser. Metod: En kvalitativ studie med åtta respondenter fördelade över sju semistrukturerade intervjuer. Slutsatser: Studien visar på tre faktorer som behövs för att skapa en organisationskultur där lärande uppmuntras. De tre faktorerna är hållbarhetsramverk, tillit till anställdas förmåga samt frihet i att utforma arbetsprocesser. Tillsammans leder faktorerna till att skapa en lärande kultur som driver införlivande av hållbarhet i innovationsprocessen. Studien visar också att tvärfunktionella grupper behöver skapas i de initiala faserna av innovationsprocessen. De tvärfunktionella grupperna bör tillåtas inneha ett explorativt idésökande som arbetssätt. Det explorativa sökandet efter innovationer kan ske internt inom företagen eller genom externa samarbeten. / Background: The increasing concern for our planet’s well-being has induced an increased focus on sustainable development. It is of importance for companies to engage in sustainable development, partly since they are the reason for many sustainability-related issues, and partly because they have the resources required to solve the issues. In order to affect sustainable development, companies need to develop sustainable innovations to change their products, processes and business models. However, the research field concerning sustainable innovations is still in its infancy stage and therefore requires more research. In particular, the research field is in need of more qualitative research which refers to how sustainable innovations are developed on a company level. Purpose: The aim of this study is to increase the understanding of how sustainability can be incorporated into the innovation process. Method: A qualitative study with eight respondents distributed across seven semi-structured interviews. Findings: The study points out three factors that are essential when creating an organizational culture which encourage learning. The three factors are sustainable framework, trust in the employees’ abilities and lastly freedom for employees to form their work processes. Together the factors create a learning culture that drives the incorporation of sustainability into the innovation process. The study also pinpoints the need of creating cross-functional groups in the initial phases of the innovation process. The cross-functional teams should be encouraged to use an exploratory search method. An exploratory search for innovation can be conducted within the corporation or through external collaborations.
|
7 |
Towards Collaborative Session-based Semantic SearchStraub, Sebastian 11 October 2017 (has links) (PDF)
In recent years, the most popular web search engines have excelled in their ability to answer short queries that require clear, localized and personalized answers. When it comes to complex exploratory search tasks however, the main challenge for the searcher remains the same as back in the 1990s: Trying to formulate a single query that contains all the right keywords to produce at least some relevant results.
In this work we want to investigate new ways to facilitate exploratory search by making use of context information from the user's entire search process. Therefore we present the concept of session-based semantic search, with an optional extension to collaborative search scenarios. To improve the relevance of search results we expand queries with terms from the user's recent query history in the same search context (session-based search). We introduce a novel method for query classification based on statistical topic models which allows us to track the most important topics in a search session so that we can suggest relevant documents that could not be found through keyword matching.
To demonstrate the potential of these concepts, we have built the prototype of a session-based semantic search engine which we release as free and open source software. In a qualitative user study that we have conducted, this prototype has shown promising results and was well-received by the participants. / Die führenden Web-Suchmaschinen haben sich in den letzten Jahren gegenseitig darin übertroffen, möglichst leicht verständliche, lokalisierte und personalisierte Antworten auf kurze Suchanfragen anzubieten. Bei komplexen explorativen Rechercheaufgaben hingegen ist die größte Herausforderung für den Nutzer immer noch die gleiche wie in den 1990er Jahren: Eine einzige Suchanfrage so zu formulieren, dass alle notwendigen Schlüsselwörter enthalten sind, um zumindest ein paar relevante Ergebnisse zu erhalten.
In der vorliegenden Arbeit sollen neue Methoden entwickelt werden, um die explorative Suche zu erleichtern, indem Kontextinformationen aus dem gesamten Suchprozess des Nutzers einbezogen werden. Daher stellen wir das Konzept der sitzungsbasierten semantischen Suche vor, mit einer optionalen Erweiterung auf kollaborative Suchszenarien. Um die Relevanz von Suchergebnissen zu steigern, werden Suchanfragen mit Begriffen aus den letzten Anfragen des Nutzers angereichert, die im selben Suchkontext gestellt wurden (sitzungsbasierte Suche). Außerdem wird ein neuartiger Ansatz zur Klassifizierung von Suchanfragen eingeführt, der auf statistischen Themenmodellen basiert und es uns ermöglicht, die wichtigsten Themen in einer Suchsitzung zu erkennen, um damit weitere relevante Dokumente vorzuschlagen, die nicht durch Keyword-Matching gefunden werden konnten.
Um das Potential dieser Konzepte zu demonstrieren, wurde im Rahmen dieser Arbeit der Prototyp einer sitzungsbasierten semantischen Suchmaschine entwickelt, den wir als freie Software veröffentlichen. In einer qualitativen Nutzerstudie hat dieser Prototyp vielversprechende Ergebnisse hervorgebracht und wurde von den Teilnehmern positiv aufgenommen.
|
8 |
Recherche exploratoire basée sur des données liées / Linked data based exploratory searchMarie, Nicolas 12 December 2014 (has links)
Cette thèse s’intéresse à l’exploitation de la sémantique de données pour la recherche exploratoire. La recherche exploratoire se réfère à des tâches de recherche qui sont très ouvertes, avec de multiples facettes, et itératives. Les données sémantiques et les données liées en particulier, offrent de nouvelles possibilités pour répondre à des requêtes de recherche et des besoins d’information complexes. Dans ce contexte, le nuage de données ouvertes liées (LOD) joue un rôle important en permettant des traitements de données avancés et des interactions innovantes. Nous détaillons un état de l’art de la recherche exploratoire sur les données liées. Puis nous proposons un algorithme de recherche exploratoire à base de données liées basé sur une recherche associative. A partir d’un algorithme de propagation d’activation nous proposons une nouvelle formule de diffusion optimisée pour les graphes typés. Nous proposons ensuite des formalisations supplémentaires de plusieurs modes d’interrogation avancée. Nous présentons également une architecture logicielle innovante basée sur deux choix de conception paradigmatiques. D’abord, les résultats doivent être calculés à la demande. Deuxièmement, les données sont consommées à distance à partir de services SPARQL distribués. Cela nous permet d’atteindre un niveau élevé de flexibilité en termes d’interrogation et de sélection des données. L’application Discovery Hub implémente ces résultats et les présente dans une interface optimisée pour l’exploration. Nous évaluons notre approche grâce à plusieurs campagnes avec des utilisateurs et nous ouvrons le débat sur de nouvelles façons d’évaluer les moteurs de recherche exploratoires. / The general topic of the thesis is web search. It focused on how to leverage the data semantics for exploratory search. Exploratory search refers to cognitive consuming search tasks that are open-ended, multi-faceted, and iterative like learning or topic investigation. Semantic data and linked data in particular offer new possibilities to solve complex search queries and information needs including exploratory search ones. In this context the linked open data cloud plays an important role by allowing advanced data processing and innovative interactions model elaboration. First, we detail a state-of-the-art review of linked data based exploratory search approaches and systems. Then we propose a linked data based exploratory search solution which is mainly based on an associative retrieval algorithm. We started from a spreading activation algorithm and proposed new diffusion formula optimized for typed graph. Starting from this formalization we proposed additional formalizations of several advanced querying modes in order to solve complex exploratory search needs. We also propose an innovative software architecture based on two paradigmatic design choices. First the results have to be computed at query-time. Second the data are consumed remotely from distant SPARQL endpoints. This allows us to reach a high level of flexibility in terms of querying and data selection. We specified, designed and evaluated the Discovery Hub web application that retrieves the results and present them in an interface optimized for exploration. We evaluate our approach thanks to several human evaluations and we open the discussion about new ways to evaluate exploratory search engines.
|
9 |
Évaluation des moteurs de recherche exploratoire : élaboration d'un corps de méthodes centrées utilisateurs, basées sur une modélisation du processus de recherche exploratoire / Evaluating exploratory search engines : designing a set of user-centered methods based on a modeling of the exploratory search processPalagi, Emilie 23 November 2018 (has links)
Les moteurs de recherche exploratoire (MRE) sont des logiciels aidant les utilisateurs à explorer un domaine d’intérêt pour y faire des découvertes. Ces moteurs se distinguent en cela des moteurs de recherche classiques tels que Google, Bing ou Yahoo!, lesquels supportent plutôt des recherches ciblées ou recherches de consultation (lookup). Si l’on admet que l’évaluation des MRE vise à vérifier si ces derniers aident effectivement les utilisateurs à réaliser leur tâche d’exploration, on constate que les méthodes existantes d’évaluation de ces systèmes ne permettent pas réellement cette vérification. L’une des raisons à cela est que ces méthodes ne reposent pas sur un modèle approprié de la recherche exploratoire (RE) ou qu’elles restent accrochées à un modèle de la recherche de consultation. L’objectif principal de cette thèse est de proposer aux concepteurs de ces MRE des méthodes d’évaluation centrées utilisateurs reposant sur un modèle du processus de RE. Ainsi, après avoir modélisé le processus de RE, nous proposons deux méthodes d’évaluation qui peuvent être utilisées tout au long du processus de conception. La première méthode, une méthode d’inspection sans utilisateurs, peut être utilisée dès les premières maquettes, et repose sur des heuristiques de RE. Nous avons également proposé des outils facilitant l’utilisation de ces heuristiques : un formulaire en ligne ainsi qu’une extension Google Chrome appelée CheXplore. La seconde méthode, avec utilisateurs, peut être utilisée dès la première version d’un prototype fonctionnel. Cette méthode se présente comme une procédure de test utilisateur personnalisable. Dans cette thèse, nous nous intéressons plus particulièrement à deux éléments de cette procédure : un protocole d’élaboration de tâches de RE et une grille d’analyse d’enregistrements vidéo de session de RE. La pertinence du modèle ainsi que les méthodes qui en découlent ont été évaluées à l’occasion de tests utilisateurs. Le modèle, les heuristiques et le protocole d’élaboration des tâches de RE ont été validés. Les premières évaluations de la grille d’analyse d’enregistrements vidéos ont révélé des points à améliorer. / Exploratory search systems are search engines that help users to explore a topic of interest. A shortcoming of current evaluation methods is that they cannot be used to determine if an exploratory search system can effectively help the user in performing exploratory search tasks. Indeed, the assessment cannot be the same between classic search systems (such as Google, Bing, Yahoo!...) and exploratory search systems. The complexity and the difficulty to have a consensus definition of the exploratory search concept and process are reflected in the difficulties to evaluate such systems. Indeed, they combine several specifics features and behaviors forming an alchemy difficult to evaluate. The main objective of this thesis is to propose for the designers of these systems (i.e. computer scientists) user-centered evaluation methods of exploratory search systems. These methods are based on a model of exploratory search process in order to help the evaluators to verify if a given system supports effectively the exploratory search process. Thus, after elaborating a model of exploratory search process, we propose two model-based methods, with and without users, which can be used all along the design process. The first method, without users, can be used from the first sketch of the system, consists of a set of heuristics of exploratory search and a procedure for using them. We also propose two tools facilitating their use: an online form format and an Google Chrome plugin, CheXplore. The second method involves real end-users of exploratory search systems who test a functional prototype or version of an exploratory search system. In this thesis, we mainly focus on two model-based elements of a customizable user testing procedure: a protocol for the elaboration of exploratory search tasks and a video analysis grid for the evaluation of recorded exploratory search sessions.
|
10 |
Towards Collaborative Session-based Semantic SearchStraub, Sebastian 11 October 2017 (has links)
In recent years, the most popular web search engines have excelled in their ability to answer short queries that require clear, localized and personalized answers. When it comes to complex exploratory search tasks however, the main challenge for the searcher remains the same as back in the 1990s: Trying to formulate a single query that contains all the right keywords to produce at least some relevant results.
In this work we want to investigate new ways to facilitate exploratory search by making use of context information from the user's entire search process. Therefore we present the concept of session-based semantic search, with an optional extension to collaborative search scenarios. To improve the relevance of search results we expand queries with terms from the user's recent query history in the same search context (session-based search). We introduce a novel method for query classification based on statistical topic models which allows us to track the most important topics in a search session so that we can suggest relevant documents that could not be found through keyword matching.
To demonstrate the potential of these concepts, we have built the prototype of a session-based semantic search engine which we release as free and open source software. In a qualitative user study that we have conducted, this prototype has shown promising results and was well-received by the participants.:1. Introduction
2. Related Work
2.1. Topic Models
2.1.1. Common Traits
2.1.2. Topic Modeling Techniques
2.1.3. Topic Labeling
2.1.4. Topic Graph Visualization
2.2. Session-based Search
2.3. Query Classification
2.4. Collaborative Search
2.4.1. Aspects of Collaborative Search Systems
2.4.2. Collaborative Information Retrieval Systems
3. Core Concepts
3.1. Session-based Search
3.1.1. Session Data
3.1.2. Query Aggregation
3.2. Topic Centroid
3.2.1. Topic Identification
3.2.2. Topic Shift
3.2.3. Relevance Feedback
3.2.4. Topic Graph Visualization
3.3. Search Strategy
3.3.1. Prerequisites
3.3.2. Search Algorithms
3.3.3. Query Pipeline
3.4. Collaborative Search
3.4.1. Shared Topic Centroid
3.4.2. Group Management
3.4.3. Collaboration
3.5. Discussion
4. Prototype
4.1. Document Collection
4.1.1. Selection Criteria
4.1.2. Data Preparation
4.1.3. Search Index
4.2. Search Engine
4.2.1. Search Algorithms
4.2.2. Query Pipeline
4.2.3. Session Persistence
4.3. User Interface
4.4. Performance Review
4.5. Discussion
5. User Study
5.1. Methods
5.1.1. Procedure
5.1.2. Implementation
5.1.3. Tasks
5.1.4. Questionnaires
5.2. Results
5.2.1. Participants
5.2.2. Task Review
5.2.3. Literature Research Results
5.3. Discussion
6. Conclusion
Bibliography
Weblinks
A. Appendix
A.1. Prototype: Source Code
A.2. Survey
A.2.1. Tasks
A.2.2. Document Filter for Google Scholar
A.2.3. Questionnaires
A.2.4. Participant’s Answers
A.2.5. Participant’s Search Results / Die führenden Web-Suchmaschinen haben sich in den letzten Jahren gegenseitig darin übertroffen, möglichst leicht verständliche, lokalisierte und personalisierte Antworten auf kurze Suchanfragen anzubieten. Bei komplexen explorativen Rechercheaufgaben hingegen ist die größte Herausforderung für den Nutzer immer noch die gleiche wie in den 1990er Jahren: Eine einzige Suchanfrage so zu formulieren, dass alle notwendigen Schlüsselwörter enthalten sind, um zumindest ein paar relevante Ergebnisse zu erhalten.
In der vorliegenden Arbeit sollen neue Methoden entwickelt werden, um die explorative Suche zu erleichtern, indem Kontextinformationen aus dem gesamten Suchprozess des Nutzers einbezogen werden. Daher stellen wir das Konzept der sitzungsbasierten semantischen Suche vor, mit einer optionalen Erweiterung auf kollaborative Suchszenarien. Um die Relevanz von Suchergebnissen zu steigern, werden Suchanfragen mit Begriffen aus den letzten Anfragen des Nutzers angereichert, die im selben Suchkontext gestellt wurden (sitzungsbasierte Suche). Außerdem wird ein neuartiger Ansatz zur Klassifizierung von Suchanfragen eingeführt, der auf statistischen Themenmodellen basiert und es uns ermöglicht, die wichtigsten Themen in einer Suchsitzung zu erkennen, um damit weitere relevante Dokumente vorzuschlagen, die nicht durch Keyword-Matching gefunden werden konnten.
Um das Potential dieser Konzepte zu demonstrieren, wurde im Rahmen dieser Arbeit der Prototyp einer sitzungsbasierten semantischen Suchmaschine entwickelt, den wir als freie Software veröffentlichen. In einer qualitativen Nutzerstudie hat dieser Prototyp vielversprechende Ergebnisse hervorgebracht und wurde von den Teilnehmern positiv aufgenommen.:1. Introduction
2. Related Work
2.1. Topic Models
2.1.1. Common Traits
2.1.2. Topic Modeling Techniques
2.1.3. Topic Labeling
2.1.4. Topic Graph Visualization
2.2. Session-based Search
2.3. Query Classification
2.4. Collaborative Search
2.4.1. Aspects of Collaborative Search Systems
2.4.2. Collaborative Information Retrieval Systems
3. Core Concepts
3.1. Session-based Search
3.1.1. Session Data
3.1.2. Query Aggregation
3.2. Topic Centroid
3.2.1. Topic Identification
3.2.2. Topic Shift
3.2.3. Relevance Feedback
3.2.4. Topic Graph Visualization
3.3. Search Strategy
3.3.1. Prerequisites
3.3.2. Search Algorithms
3.3.3. Query Pipeline
3.4. Collaborative Search
3.4.1. Shared Topic Centroid
3.4.2. Group Management
3.4.3. Collaboration
3.5. Discussion
4. Prototype
4.1. Document Collection
4.1.1. Selection Criteria
4.1.2. Data Preparation
4.1.3. Search Index
4.2. Search Engine
4.2.1. Search Algorithms
4.2.2. Query Pipeline
4.2.3. Session Persistence
4.3. User Interface
4.4. Performance Review
4.5. Discussion
5. User Study
5.1. Methods
5.1.1. Procedure
5.1.2. Implementation
5.1.3. Tasks
5.1.4. Questionnaires
5.2. Results
5.2.1. Participants
5.2.2. Task Review
5.2.3. Literature Research Results
5.3. Discussion
6. Conclusion
Bibliography
Weblinks
A. Appendix
A.1. Prototype: Source Code
A.2. Survey
A.2.1. Tasks
A.2.2. Document Filter for Google Scholar
A.2.3. Questionnaires
A.2.4. Participant’s Answers
A.2.5. Participant’s Search Results
|
Page generated in 0.0845 seconds