• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radial Solutions of Singular Semilinear Equations on Exterior Domains

Ali, Mageed Hameed 05 1900 (has links)
We prove the existence and nonexistence of radial solutions of singular semilinear equations Δu + k(x)f(u)=0 with boundary condition on the exterior of the ball with radius R>0 in ℝ^N such that lim r →∞ u(r)=0, where f: ℝ \ {0} →ℝ is an odd and locally Lipschitz continuous nonlinear function such that there exists a β >0 with f <0 on (0, β), f >0 on (β, ∞), and K(r) ~ r^-α for some α >0.
2

Infinitely Many Solutions of Semilinear Equations on Exterior Domains

Joshi, Janak R 08 1900 (has links)
We prove the existence and nonexistence of solutions for the semilinear problem ∆u + K(r)f(u) = 0 with various boundary conditions on the exterior of the ball in R^N such that lim r→∞u(r) = 0. Here f : R → R is an odd locally lipschitz non-linear function such that there exists a β > 0 with f < 0 on (0, β), f > 0 on (β, ∞), and K(r) \equiv r^−α for some α > 0.
3

Classes of Singular Nonlinear Eigenvalue Problems with Semipositone Structure

Kalappattil, Lakshmi Sankar 17 August 2013 (has links)
The investigation of positive steady states to reaction diffusion models in bounded domains with Dirichlet boundary conditions has been of great interest since the 1960’s. We study reaction diffusion models where the reaction term is negative at the origin. In the literature, such problems are referred to as semipositone problems and have been studied for the last 30 years. In this dissertation, we extend the theory of semipositone problems to classes of singular semipositone problems where the reaction term has singularities at certain locations in the domain. In particular, we consider problems where the reaction term approaches negative infinity at these locations. We establish several existence results when the domain is a smooth bounded region or an exterior domain. Some uniqueness results are also obtained. Our existence results are achieved by the method of sub and super solutions, while our uniqueness results are proved by establishing a priori estimates and analyzing structural properties of the solution. We also extend many of our results to systems.
4

Analysis of Classes of Nonlinear Eigenvalue Problems on Exterior Domains

Butler, Dagny Grillis 15 August 2014 (has links)
In this dissertation, we establish new existence, multiplicity, and uniqueness results on positive radial solutions for classes of steady state reaction diffusion equations on the exterior of a ball. In particular, for the first time in the literature, this thesis focuses on the study of solutions that satisfy a general class of nonlinear boundary conditions on the interior boundary while they approach zero at infinity (far away from the interior boundary). Such nonlinear boundary conditions occur naturally in various applications including models in the study of combustion theory. We restrict our analysis to reactions terms that grow slower than a linear function for large arguments. However, we allow all types of behavior of the reaction terms at the origin (cases when it is positive, zero, as well as negative). New results are also added to ecological systems with Dirichlet boundary conditions on the interior boundary (this is the case when the boundary is cold). We establish our existence and multiplicity results by the method of sub and super solutions and our uniqueness results via deriving a priori estimates for solutions.
5

Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólico

Nunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
6

Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólico

Nunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
7

Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólico

Nunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
8

Transition fronts and propagation speeds in diffusive excitable media / Fronts de transition et vitesses de propagation dans des milieux diffusifs excitables

Guo, Hongjun 11 June 2018 (has links)
Cette thèse porte sur les fronts de transition pour des équations de réaction-diffusion dans différents milieux. Les fronts de transition généralisent les notions habituelles de fronts progressifs ou pulsatoires. Les principaux résultats sont les suivants. Pour des réactions bistables, nous prouvons la monotonie en temps de tous les fronts de transition avec vitesse globale moyenne non nulle. Pour des réactions bistables périodiques en temps ou pour des réactions de type combustion, nous prouvons l’existence et l’unicité de la vitesse globale moyenne d’un front. De plus, nous montrons que les fronts presque plans sont en réalité plans et nous montrons l’existence de fronts de transitions non standard. Pour des réactions bistables périodiques en espace, nous montrons la continuité et la différentiabilité des vitesses et des profils de ces fronts pulsatoires par rapport à la direction e en supposant l’existence de fronts pulsatoires à vitesse non nulle dans toutes les directions $e$. Ensuite, nous prouvons que la vitesse de propagation d’un front de transition quelconque est comprise entre les vitesses minimales et maximales des fronts pulsatoires. Enfin, nous étudions les vitesses globales moyennes des fronts de transition bistables dans des domaines non bornés : domaines extérieurs ou domaines à branches multiples cylindriques. Dans ces deux types de domaines, nous prouvons l’existence et l’unicité de la vitesse globale moyenne de tous les fronts de transition sous certaines hypothèses. / This dissertation is concerned with transition fronts in various media, which generalize the standard notions of traveling fronts. The main results are as following. For bistable reaction, we prove the time monotonicity of all transition fronts with non-zero global mean speed, whatever shape their level sets may have. For time-periodic bistable reaction and combustion-type reaction, we prove the existence and the uniqueness of the global mean speed. Meantime, we show that almost-planar fronts are actually planar and we show the existence of non-standard transitions fronts in $\mathbb{R}^N$. For spatially periodic bistable reaction, we show some continuity and differentiability properties of the front speeds and profiles with respect to the direction $e$ by providing the existence of pulsating fronts with nonzero speed in all directions $e$. Then, we prove that the propagating speed of any transition front is bounded by the minimal speed and the maximal speed of pulsating fronts. Finally, we study the mean speed of bistable transition fronts in unbounded domains: exterior domains and domains with multiple cylindrical branches. In both domains, we prove the existence and uniqueness of the global mean speed of any transition front under some assumptions.

Page generated in 0.0568 seconds