Spelling suggestions: "subject:"semilinear"" "subject:"semilineare""
1 |
Classification of the Structure of Positive Radial Solutions to some Semilinear Elliptic EquationChen, Den-bon 09 August 2004 (has links)
In this thesis, we shall give a concise account for the classification of the structure of positive radial solutions of the semilinear elliptic equation$$Delta u+K(|x|)u^{p}=0 .$$ It is known that a radial solution $u$ is crossing if $u$ has a zero in $(0, infty)$; $u$
is slowly decaying if $u$ is positive but $displaystylelim_{r
ightarrow{infty}}r^{n-2}u=infty$; u is rapidly decaying if $u$ is positive,
$displaystylelim_{r
ightarrow{infty}}r^{n-2}u$ exists and is positive. Using some Pohozaev identities, we show that under certain condition on $K$, by comparing some parameters $r_{G}$ and $r_{H}$, the structure of positive radial solutions for various initial conditions can be classified as Type Z ($u(r; alpha)$ is crossing for all $r>0$ ), Type S ($u(r; alpha)$ is slowly decaying for all $r>0$), and Type M (there is some $alpha_{f}$ such that
$u(r; alpha)$ is crossing for $alphain(alpha_{f},
infty)$, $u(r; alpha)$ is slowly decaying for
$alpha=alpha_{f}$, and $u(r; alpha)$ is rapidly decaying for $alphain(0, alpha_{f})$). The above work is due to Yanagida and Yotsutani.
|
2 |
Existence of Continuous Solutions to a Semilinear Wave EquationPreskill, Ben 01 May 2009 (has links)
We prove two results; first, we show that a boundary value problem for the semilinear wave equation with smooth, asymptotically linear nonlinearity and sinusoidal smooth forcing along a characteristic cannot have a continuous solution. Thereafter, we show that if the sinusoidal forcing is not isolated to a characteristic of the wave equation, then the problem has a continuous solution.
|
3 |
The Structure of Radial Solutions to a Semilinear Elliptic Equation and A Pohozaev IdentityShiao, Jiunn-Yean 16 June 2003 (has links)
The elliptic equation $Delta u+K(|x|)|u|^{p-1}u=0,xin
mathbf{R}^{n}$ is studied, where $p>1$, $n>2$, $K(r)$ is
smooth and positive on $(0,infty)$, and $rK(r)in L^{1}(0,1)$. It
is known that the radial solution either oscillates infinitely, or
$lim_{r
ightarrow
infty}r^{n-2}u(r;al) in Rsetminus
{0}$ (rapidly decaying), or $lim_{r
ightarrow infty}r^{n-2}u(r;al) = infty (or
-infty)$ (slowly decaying). Let $u=u(r;al)$ is a solution
satisfying $u(0)=al$. In this thesis, we classify all the
radial solutions into three types:
Type R($i$): $u$ has exactly $i$ zeros on $(0,infty)$, and is
rapidly decaying at $r=infty$.
Type S($i$): $u$ has exactly $i$ zeros on $(0,infty)$, and is
slowly decaying at $r=infty$.
Type O: $u$ has infinitely many zeros on $(0,infty)$.
If $rK_{r}(r)/K(r)$ satisfies some conditions, then the structure
of radial solutions is determined completely. In particular, there
exists $0<al_{0}<al_{1}<al_{2}<cdots<infty$ such that
$u(r;al_{i})$ is of Type R($i$), and $u(r;al)$ is of Type S($i$)
for all $al in (al_{i-1},al_{i})$, where $al_{-1}:=0$. These
works are due to Yanagida and Yotsutani. Their main tools are
Kelvin transformation, Pr"{u}fer transformation, and a Pohozaev
identity. Here we give a concise account. Also, I impose a
concept so called $r-mu graph$, and give two proofs of the
Pohozaev identity.
|
4 |
Radial Solutions of Singular Semilinear Equations on Exterior DomainsAli, Mageed Hameed 05 1900 (has links)
We prove the existence and nonexistence of radial solutions of singular semilinear equations Δu + k(x)f(u)=0 with boundary condition on the exterior of the ball with radius R>0 in ℝ^N such that lim r →∞ u(r)=0, where f: ℝ \ {0} →ℝ is an odd and locally Lipschitz continuous nonlinear function such that there exists a β >0 with f <0 on (0, β), f >0 on (β, ∞), and K(r) ~ r^-α for some α >0.
|
5 |
Existência de solução e estabilidade na fronteira da equação da onda semilinear. / Existence of solution and stability at the frontier of the semilinear wave equation.PAZ, Fabrício Lopes de Araújo. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:44:39Z
No. of bitstreams: 1
FABRÍCIO LOPES DE ARAÚJO PAZ - DISSERTAÇÃO PPGMAT 2012..pdf: 1112400 bytes, checksum: bb5a2bfc91abd1944b395cfa18b977da (MD5) / Made available in DSpace on 2018-08-05T13:44:39Z (GMT). No. of bitstreams: 1
FABRÍCIO LOPES DE ARAÚJO PAZ - DISSERTAÇÃO PPGMAT 2012..pdf: 1112400 bytes, checksum: bb5a2bfc91abd1944b395cfa18b977da (MD5)
Previous issue date: 2012-06 / Capes / Para ler o resumo deste trabalho recomendamos o download do arquivo uma vez que o mesmo possui fórmulas e símbolos matemáticos que não puderam ser transcritos neste espaço. / To read the summary of this work we recommend downloading the file as it contains mathematical formulas and symbols that could not be transcribed in this space.
|
6 |
Infinitely Many Solutions of Semilinear Equations on Exterior DomainsJoshi, Janak R 08 1900 (has links)
We prove the existence and nonexistence of solutions for the semilinear problem ∆u + K(r)f(u) = 0 with various boundary conditions on the exterior of the ball in R^N such that lim r→∞u(r) = 0. Here f : R → R is an odd locally lipschitz non-linear function such that there exists a β > 0 with f < 0 on (0, β), f > 0 on (β, ∞), and K(r) \equiv r^−α for some α > 0.
|
7 |
Boa colocação da equação do calor semilinear em L^p-fraco / Well possednss of the semilinear heat equation on weak L^pRosas, Marco Moya [UNESP] 28 April 2016 (has links)
Submitted by MARCO ANTONIO MOYA ROSAS null (23689400813) on 2016-06-08T23:48:22Z
No. of bitstreams: 1
Marco.pdf: 3930307 bytes, checksum: fa27a7c6ffca34b6c67e9ba1944a88be (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-06-13T14:55:05Z (GMT) No. of bitstreams: 1
rosas_mm_me_rcla.pdf: 3930307 bytes, checksum: fa27a7c6ffca34b6c67e9ba1944a88be (MD5) / Made available in DSpace on 2016-06-13T14:55:05Z (GMT). No. of bitstreams: 1
rosas_mm_me_rcla.pdf: 3930307 bytes, checksum: fa27a7c6ffca34b6c67e9ba1944a88be (MD5)
Previous issue date: 2016-04-28 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Neste trabalho, analisaremos o problema de boa colocação do problema de valor inicial para a equação semilinear do calor. Mostraremos a existência de solução global mild, quando o dado inicial u_0 pertence ao espaço L^( n(ρ−1) /2) −fraco e tem norma suficientemente pequena. / In this work, we discuss the well−posedness of the initial value problem for the semilinear heat equation. We show the existence of global mild solution, when the initial data u_0 belong to weak L^(n(ρ−1)/ 2) space with a sufficiently small norm.
|
8 |
Auto-similaridade e unicidade para um sistema semilinear, e existência de solução com dado singular para a equação da onda semilinearMateus de Souza, Eder 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T18:28:19Z (GMT). No. of bitstreams: 2
arquivo4243_1.pdf: 672080 bytes, checksum: 6deff6a05389ae357d763b61ce1acd73 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2008 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Obtivemos a boa-colocação global de soluções pequenas em espaços de Marcinkiewicz
L(p1;¥) £L(p2;¥) para um sistema semilinear. Soluções brandas são obtidas em espaços com
índices certos para permitir a existência de solução auto-similar. Usando nossas estimativas
dos termos de acoplamento não lineares, provamos a unicidade de soluções na classe
C([0;¥);Lp1(Rn)£Lp2(Rn)); sem qualquer hipótese de pequenez. Provamos algumas estimativas
de decaimento e analisamos o comportamento assintótico das soluções. Estudamos também
o problema de Cauchy para a equação da onda semilinear, com dados singulares em espaços de
Marcinkiewicz, provando um resultado de boa-colocação local e decaimento próximo de t = 0
|
9 |
Blow-up de soluções positivas de equações semilineares / Blow-up of solutions of the semilinear equationsFernanda Tomé Alves 31 March 2006 (has links)
Considere o problema de valor inicial e de fronteira \'u IND.t\'= \'delta\'u + f(u) em \'ômega\' x (0, T), u(x, 0) = \'fi\'(x) se x \'PERTENCE A\' \'ômega\', u(x, t) = 0 se x \'PERTENCE A\' \'delta\' \'ômega\', 0 < t < T, onde \'ômega\' é um domínio limitado em \'R POT.n\'com bordo \'C POT.2\', f é continuamente diferenciável com f(s) > 0, e \'fi\' é não-negativa e suave sobre \'ômega\'\'BARRA\' com \'fi\'=0 sobre \'delta\'\'ômega\'. Suponha que a única solução u(x,t) possui blow-up em tempo finito T < \'INFINITO\'. A questão que se coloca é: onde ocorre o blow-up? Neste trabalho provamos que: se \'ômega\'=\'B IND.R\'\'ESTÁ CONTIDO EM\'\'R POT. n\', então o blow-up ocorre apenas em r=0, Além disso, se f(u)=\'u POT.p\'p > 1, então u(r,t)\'< OU = \'C/\'r POT.2\'(\'gama\'-1) para qualquer 1 < \'gama\'< p, e assim \'limsup IND. t\'SETA\'T\'-||u(u.\'t)||q < \'INFINITO\'se q < n(p-1)/2. No caso não simétrico onde \'ômega\' é um domínio complexo, provamos que conjunto de blow-up é um subconjunto compacto de \'ômega\'. Se f(u)=\'u POT.p\', p > 1, então u(x,t)\'< OU = \'C/\'(T-t) POT. 1/p-1\' e, se n=1,2 ou se n\'< OU=\'3 p\'< OU=\'(n+2)/(n-2), então \'tau\'POT. \'beta\'u(x+\'Ksi\', T-\'tau\'\'SETA\'\'C IND. 0\' quando \'tau\'\'SETA\'\'0 POT. 1/2\'e \'C IND. 0\'= \'beta\'POT.\'beta\'\'onde \'beta\'= \'(p-1) POT. -1\'. As provas das estimativas essenciais para demonstração desses resultados são feitas utilizando o Princípio do Máximo / Consider the initial-boundary value problem \'u IND.t\'= \'delta\'u + f(u) in \'ômega\' x (0, T), u(x, 0) = \'fi\'(x) if x \'BELONGS\' \'ômega\', u(x, t) = 0 if x \'BELONGS \' \'\\PARTIAL\' \'ômega\', 0 < t < T, where \'ômega\' is a bounded domain in \'R POT.n\'with \'C POT.2\', f is continuously differentiable with f(s) > 0, and \'fi\' is nonnegative and smooth on \'ômega\'\'BARRA\' with \'fi\'=0 on \'\\PARTIIAL\'\'ômega\'. Assume that the unique solution u(x,t) blows up in finite time T < \'INFINITO\'. The question addressed is: where does the blow-up occur? In this work we prove: if \'ômega\'=\'B IND.R\'\'IS CONTAINED EM\'\'R POT. n\', then blow-up occurs only at r=0, Moreover, if f(u)=\'u POT.p\'p > 1, then u(r,t)\'< OU = \'C/\'r POT.2\'(\'gama\'-1) for any 1 < \'gama\'< p, and hence \'limsup IND. t\'SETA\'T\'-||u(u.\'t)||q < \'INFINITO\'se q < n(p-1)/2. In the nonsymmetric case where \'ômega\' is a convex domain, we prove that the blow-up set lies in a compact subset of \'ômega\'. If f(u)=\'u POT.p\', p > 1, then u(x,t)\'< OU = \'C/\'(T-t) POT. 1/p-1\' and, if n=1,2 or if n\'< OU=\'3 and p\'< OU=\'(n+2)/(n-2), then \'tau\'POT. \'beta\'u(x+\'Ksi\', T-\'tau\'\'SETA\'\'C IND. 0\' where \'tau\'\'SETA\'\'0 POT. 1/2\'e \'C IND. 0\'= \'beta\'POT.\'beta\'\'where \'beta\'= \'(p-1) POT. -1\'. Elementary applications of the Maximum Principle are used to prove the essential estimate for the proofs of these results.
|
10 |
Blow-up de soluções positivas de equações semilineares / Blow-up of solutions of the semilinear equationsAlves, Fernanda Tomé 31 March 2006 (has links)
Considere o problema de valor inicial e de fronteira \'u IND.t\'= \'delta\'u + f(u) em \'ômega\' x (0, T), u(x, 0) = \'fi\'(x) se x \'PERTENCE A\' \'ômega\', u(x, t) = 0 se x \'PERTENCE A\' \'delta\' \'ômega\', 0 < t < T, onde \'ômega\' é um domínio limitado em \'R POT.n\'com bordo \'C POT.2\', f é continuamente diferenciável com f(s) > 0, e \'fi\' é não-negativa e suave sobre \'ômega\'\'BARRA\' com \'fi\'=0 sobre \'delta\'\'ômega\'. Suponha que a única solução u(x,t) possui blow-up em tempo finito T < \'INFINITO\'. A questão que se coloca é: onde ocorre o blow-up? Neste trabalho provamos que: se \'ômega\'=\'B IND.R\'\'ESTÁ CONTIDO EM\'\'R POT. n\', então o blow-up ocorre apenas em r=0, Além disso, se f(u)=\'u POT.p\'p > 1, então u(r,t)\'< OU = \'C/\'r POT.2\'(\'gama\'-1) para qualquer 1 < \'gama\'< p, e assim \'limsup IND. t\'SETA\'T\'-||u(u.\'t)||q < \'INFINITO\'se q < n(p-1)/2. No caso não simétrico onde \'ômega\' é um domínio complexo, provamos que conjunto de blow-up é um subconjunto compacto de \'ômega\'. Se f(u)=\'u POT.p\', p > 1, então u(x,t)\'< OU = \'C/\'(T-t) POT. 1/p-1\' e, se n=1,2 ou se n\'< OU=\'3 p\'< OU=\'(n+2)/(n-2), então \'tau\'POT. \'beta\'u(x+\'Ksi\', T-\'tau\'\'SETA\'\'C IND. 0\' quando \'tau\'\'SETA\'\'0 POT. 1/2\'e \'C IND. 0\'= \'beta\'POT.\'beta\'\'onde \'beta\'= \'(p-1) POT. -1\'. As provas das estimativas essenciais para demonstração desses resultados são feitas utilizando o Princípio do Máximo / Consider the initial-boundary value problem \'u IND.t\'= \'delta\'u + f(u) in \'ômega\' x (0, T), u(x, 0) = \'fi\'(x) if x \'BELONGS\' \'ômega\', u(x, t) = 0 if x \'BELONGS \' \'\\PARTIAL\' \'ômega\', 0 < t < T, where \'ômega\' is a bounded domain in \'R POT.n\'with \'C POT.2\', f is continuously differentiable with f(s) > 0, and \'fi\' is nonnegative and smooth on \'ômega\'\'BARRA\' with \'fi\'=0 on \'\\PARTIIAL\'\'ômega\'. Assume that the unique solution u(x,t) blows up in finite time T < \'INFINITO\'. The question addressed is: where does the blow-up occur? In this work we prove: if \'ômega\'=\'B IND.R\'\'IS CONTAINED EM\'\'R POT. n\', then blow-up occurs only at r=0, Moreover, if f(u)=\'u POT.p\'p > 1, then u(r,t)\'< OU = \'C/\'r POT.2\'(\'gama\'-1) for any 1 < \'gama\'< p, and hence \'limsup IND. t\'SETA\'T\'-||u(u.\'t)||q < \'INFINITO\'se q < n(p-1)/2. In the nonsymmetric case where \'ômega\' is a convex domain, we prove that the blow-up set lies in a compact subset of \'ômega\'. If f(u)=\'u POT.p\', p > 1, then u(x,t)\'< OU = \'C/\'(T-t) POT. 1/p-1\' and, if n=1,2 or if n\'< OU=\'3 and p\'< OU=\'(n+2)/(n-2), then \'tau\'POT. \'beta\'u(x+\'Ksi\', T-\'tau\'\'SETA\'\'C IND. 0\' where \'tau\'\'SETA\'\'0 POT. 1/2\'e \'C IND. 0\'= \'beta\'POT.\'beta\'\'where \'beta\'= \'(p-1) POT. -1\'. Elementary applications of the Maximum Principle are used to prove the essential estimate for the proofs of these results.
|
Page generated in 0.1349 seconds