• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 18
  • 17
  • 7
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 158
  • 158
  • 42
  • 36
  • 34
  • 32
  • 29
  • 26
  • 23
  • 21
  • 21
  • 19
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Characterisation of secreted exosomes from the intestinal nematode Heligmosomoides polygyrus

Coakley, Gillian January 2017 (has links)
The parasite secretome has been shown to play a key role in both pathogenicity and the regulation of host defence, allowing pathogens, such as helminths, to establish a chronic infection within the host. The recently discovered presence of extracellular vesicles within parasite-derived excretory-secretory products introduces a new mechanism of potential cross-species communication. Extracellular vesicles (EVs), such as exosomes, facilitate cellular communication through the transfer of small RNAs, lipids and proteins between cells and organisms across all three kingdoms of life. In addition to their roles in normal physiology, EVs also transport molecules from pathogens to hosts, presenting parasite antigens and transferring infectious agents. Here, I examine secreted vesicles from the murine gastrointestinal nematode Heligmosomoides polygyrus, and their potential role in the host-helminth interactions. Transmission electron microscopy reveals vesicle-like structures of 50- 100 nM in the ultracentrifuged secretory product, and potential evidence of multi-vesicular bodies in the worm intestine. This, coupled with information from the exoproteome, helped support the hypothesis that exosomes originate from the parasite intestinal tract. I have completed a series of studies looking at the fundamental properties of exosome-cell interactions, providing comparative studies between mammalian and H. polygyrus-derived exosomes. I have determined some of the key factors influencing exosome uptake, including time of incubation, cell type and exosome origin. Through microarray analysis of H. polygyrus exosome-treated small intestinal epithelial cells, we see significant gene expression changes, including those involved in the regulation of signalling and the immune response, such as DUSP1 (dual-specificity phosphatase) and IL1RL1 (the receptor for IL-33). The modest reduction of inflammatory cytokine responses by exosomes in small intestinal cell lines was amplified in immune cells, such as macrophages. Exosomes can significantly reduce expression of classical activation markers, as well as inflammatory cytokine production in the macrophage cell line RAW 264.7, and this is further supported by similar responses in bone marrow-derived macrophages. Owing to their suppressive nature, I demonstrate that immunization of mice with an exosome/alum conjugate generates significant protection from a subsequent H. polygyrus larval challenge, as seen through a reduction in egg counts and worm burden. I have investigated the role of the IL33 receptor (IL-33R); a key molecule associated with parasitic resistance that is suppressed by exosomes in type-2 associated immune responses. Uptake of H. polygyrus-derived exosomes by alternatively activated macrophages caused the suppression of type 2 cytokine/protein release and the reduction of key genes associated with this phenotype. In addition, there was also significant repression of both transcript and surface T1/ST2, a subunit of the IL-33R). Using a model of lung inflammation, in vivo studies demonstrate that, in both prophylactic and co-administration experiments, exosomes modulate the innate cellular response. This is represented by changes in the number of innate lymphoid cells (ILCs), bronchoalveolar lavage eosinophils and type-2 cytokine output. In this system, the expression of T1/ST2 on type 2 ILCs was also significantly reduced. I have extended the investigation on exosome-IL-33R responses by using T1/ST2 knockout mice. Despite generating strong antibody responses, vaccination against exosomes could not protect T1/ST2 knockout mice against a subsequent infection. This work suggests that exosomes secreted by nematodes could mediate the transfer and uptake of parasite products into host cells, establishing cross-species communication to suppress the host ‘danger’ or inflammatory response.
42

Tropism of human pegivirus (formerly known as GB virus C) and host immunomodulation : insights into viral persistence

Chivero, Ernest Tafara 01 May 2015 (has links)
Human Pegivirus (HPgV; originally called GB virus C) is an RNA virus within the Pegivirus genus of the Flaviviridae that commonly causes persistent infection. Worldwide, approximately 750 million people are infected with HPgV. No causal association between HPgV and disease has been identified; however, several studies found an association between persistent HPgV infection and prolonged survival of HIV-infected individuals that appears to be related to a reduction in host immune activation. HPgV replicates well in vivo (>10 million genome copies/ml plasma) but grows poorly in vitro and systems to study this virus are limited. Consequently, mechanisms of viral persistence and host immune modulation remain poorly characterized, and the primary permissive cell type(s) has not yet been identified. The overall goals of my thesis were to characterize HPgV tropism, effects of HPgV infection on host immune response and mechanisms of viral persistence. Previous studies found HPgV RNA in T and B lymphocytes and ex vivo infected lymphocytes produce viral particles. To further characterize HPgV tropism, we quantified HPgV RNA in highly purified CD4+ and CD8+ T cells, including naïve, central memory, and effector memory populations, and in B cells (CD19+), NK cells (CD56+) cells and monocytes (CD14+) obtained from persistently infected humans using real time RT-PCR. Single genome sequencing was performed on virus within individual cell types to estimate genetic diversity among cell populations. HPgV RNA was present in CD4+ and CD8+ T lymphocytes (9 of 9 subjects), B lymphocytes (7 of 9), NK cells and monocytes (both 4 of 5). HPgV RNA levels were higher in naïve (CD45RA+) CD4+ cells than in central memory and effector memory cells (p<0.01). HPgV sequences were highly conserved between patients (0.117 ± 0.02 substitutions per site) and within subjects (0.006 ± 0.003 substitutions per site). The non-synonymous/synonymous substitution ratio was 0.07 suggesting low selective pressure. CFSE-labeled HPgV RNA-positive microvesicles (SEV) from serum delivered CFSE to uninfected monocytes, NK cells, T and B lymphocytes, and HPgV RNA was transferred to peripheral blood mononuclear cells (PBMCs) with evidence of subsequent viral replication. Thus, HPgV RNA-positive SEV may contribute to delivery of HPgV to PBMCs in vivo, explaining the apparent broad tropism of this persistent human RNA virus. Although HPgV infection reduces NK cell activation in HIV-infected individuals, the mechanism by which this occurs is not characterized. We studied HPgV effects on NK cell non-cytolytic function in HIV-infected people by measuring expression of IL-12 induced interferon gamma (IFNg) and cytolytic function by measuring K562 target-cell induced CD107a and granzyme B. IFNg expression was lower in HIV-HPgV co-infected subjects compared to HIV mono-infected subjects treated with combination antiretroviral therapy (p=0.02). In contrast, cytolytic NK cell functions were not affected by HPgV. Inhibition of IFNg was due to inhibition of tyrosine kinase (Tyk2) by HPgV envelope protein E2. HPgV positive human sera, extracellular vesicles containing E2 protein, recombinant E2 protein and synthetic E2 peptides containing a predicted Tyk2 interacting motif inhibited IL-12-mediated IFNg release by NK cells. Thus HPgV-E2 inhibits NK cell non-cytolytic functions. Inhibition of NK cell-induced proinflammatory/antiviral cytokines may contribute to both HPgV's ability to persist with high viral loads (>10 million genome copies/ml plasma) and reduce immune cell activation. Understanding mechanisms by which HPgV alters immune activation may contribute towards novel immunomodulatory therapies to treat HIV and inflammatory diseases.
43

The impact of the syndecan-PDZ interactome on endosomal trafficking and extracellular vesicle composition / L'impact de l'interaction syndecan-PDZ sur le trafic endosomal et la composition des vésicules extracellulaires

Castro Cruz, Monica del Carmen 19 July 2018 (has links)
Les syndécans forment une famille de quatre protéines transmembranaires qui sont substituées par l'héparane sulfate. Grâce à ces chaînes glucidiques extracellulaires, les syndécans contrôlent la signalisation d'une pléthore de facteurs de croissance et de molécules d'adhésion. Une autre caractéristique remarquable des syndécans est la conservation de leur domaine intracellulaire au cours de l'évolution. Ce domaine contient un motif C-terminal qui peut induire une interaction avec les protéines dites «PDZ». Les interactions PDZ sont promiscues et les protéines PDZ contrôlent divers aspects de la signalisation cellulaire et de la communication cellule-cellule. Quatre interactions syndecan-PDZ ont été décrites à ce jour et toutes ces interactions ont des effets drastiques sur le comportement des cellules. En particulier, il a été documenté que l'interaction syndécan-synténine a un impact sur le trafic intracellulaire de molécules de signalisation liant l’héparan sulfate. De plus, les syndécans et la synténine coopèrent dans le contrôle la biogenèse des exosomes, organites extracellulaires fonctionnant comme des médiateurs importants de la communication cellule-cellule (y compris dans différentes maladies systémiques comme le cancer). Le protéome humain compte 150 protéines PDZ qui contiennent 266 domaines PDZ. Dans ce travail, nous avons mis à jour la complexité de l'interactome syndecan-PDZ et testé son impact sur le trafic membranaire et sur la composition des vésicules extracellulaires. Notre travail ouvre la voie à une meilleure compréhension des réseaux moléculaires contrôlant la communication cellule-cellule en physio-pathologie. / Syndecans form a family of four transmembrane proteins that are substituted with heparan sulfate. By virtue of these extracellular carbohydrate chains, syndecans control the signaling of a plethora of growth factors and adhesion molecules. Another remarkable feature of syndecans is the conservation of their intracellular domain through evolution. This domain contains a C-terminal motif that can mediate interaction with PDZ proteins. PDZ interactions are promiscuous and PDZ proteins control various aspects of cell signaling and cell-cell communication. Four syndecan-PDZ interactions have been described so far and all these interactions have broad effects on cell behavior. In particular, it was documented that syndecan-syntenin interaction has impact on the intracellular trafficking of heparan sulfate cargo. Moreover syndecan-syntenin controls the biogenesis of exosomes, extracellular organelles emerging as important mediators of cell-cell communication in health and diseases. The human proteome contains 150 PDZ proteins and 266 PDZ domains. Here we started addressing the complexity of the syndecan-PDZ interactome and tested for its impact on membrane trafficking and on the composition of extracellular vesicles. Our work paves the way for a better understanding of the molecular mechanisms and networks controlling cell-cell communication in health and disease.
44

Extracellular vesicles as mediators of intercellular communication in human breast cancer progression

Menck, Kerstin 31 March 2014 (has links)
No description available.
45

Development of circulatory microRNAs as markers of organ injury and mediators of inter-organ signalling

Morrison, Emma Elisabeth January 2018 (has links)
Plasma contains small, non-protein coding RNA species, microRNAs (miRNAs). Circulating miRNAs originate from tissues throughout the body and circulate in the blood bound to proteins or encapsulated in extracellular vesicles (EVs). The pattern of circulating miRNAs changes in different pathological states, leading to the hypothesis that they could act as biomarkers or mediators of inter-organ signalling. Acute kidney injury (AKI) is associated with high morbidity worldwide. Recent work has highlighted a potential role for EV signalling in the delivery of functional exogenous miRNA into kidney cells, which may contribute to the pathogenesis of AKI. The studies described in this thesis investigate the effects of circulating miRNAs on renal proximal tubular (PT) cells. Utilising next generation sequencing technology, circulating miRNA profiles were demonstrated to change significantly following myocardial injury. These findings were translated from humans into a mouse model of myocardial injury. Investigation of EV cell signalling, using flow cytometry and nanoparticle tracking analysis, demonstrated that PT cell EV uptake was not affected by known physiological agonists. By contrast, EV release from PT cells was regulated by purinergic P2Y1 and dopamine D1 receptors. Toxic cisplatin injury of PT cells resulted in increased EV release and reduced EV uptake in a dose-dependent manner. Cisplatin toxicity in PT cells was unaffected by EVs from mice with myocardial injury, but toxicity was reduced by EVs from mice with drug-induced liver injury (DILI). Circulating EVs from mice with DILI transferred the liver specific miRNA, miR-122, into PT cells in both in vivo and in vitro models. The consequence of miR-122 transfer was modulation of downstream target genes including Foxo3 which has been implicated in cell injury by apoptosis. These findings therefore show that circulatory miRNA profiles change in different models of organ injury and suggest miRNAs can be transferred to PT cells in vivo and in vitro. The improved viability of injured PT cells following co-incubation with DILI EVs, and subsequent transcriptomic work, suggests this may be as a consequence of miRNA transfer. In conclusion, circulatory miRNAs may act as mediators of inter-organ signalling and could play a crucial role in the propagation of systemic illness.
46

Molecular Profiling Plasma Extracellular Vesicles From Breast Cancer Patients

January 2018 (has links)
abstract: Extracellular vesicles (EVs) represent a heterogeneous population of small vesicles, consisting of a phospholipidic bilayer surrounding a soluble interior cargo. These vesicles play an important role in cellular communication by virtue of their protein, RNA, and lipid content, which can be transferred among cells. Peripheral blood is a rich source of circulating EVs. An analysis of EVs in peripheral blood could provide access to unparalleled amounts of biomarkers of great diagnostic, prognostic as well as therapeutic value. In the current study, a plasma EV enrichment method based on pluronic co-polymer was first established and characterized. Plasma EVs from breast cancer patients were then enriched, profiled and compared to non-cancer controls. Proteins signatures that contributed to the prediction of cancer samples from non-cancer controls were created by a random-forest based cross-validation approach. We found that a large portion of these signatures were related to breast cancer aggression. To verify such findings, KIAA0100, one of the features identified, was chosen for in vitro molecular and cellular studies in the breast cancer cell line MDA-MB-231. We found that KIAA0100 regulates cancer cell aggression in MDA-MB-231 in an anchorage-independent manner and is particularly associated with anoikis resistance through its interaction with HSPA1A. Lastly, plasma EVs contain not only individual proteins, but also numerous molecular complexes. In order to measure millions of proteins, isoforms, and complexes simultaneously, Adaptive Dynamic Artificial Poly-ligand Targeting (ADAPT) platform was applied. ADAPT employs an enriched library of single-stranded oligodeoxynucleotides to profile complex biological samples, thus achieving a deep coverage of system-wide, native biomolecules. Profiling of EVs from breast cancer patients was able to obtain a prediction AUC performance of 0.73 when compared biopsy-positive cancer patient to healthy controls and 0.64 compared to biopsy-negative controls and such performance was not associated with the physical breast condition indicated by BIRAD scores. Taken together, current research demonstrated the potential of profiling plasma EVs in searching for therapeutic targets as well as diagnostic signatures. / Dissertation/Thesis / Appendix-G / Appendix-B / Appendix-C / Appendix-D / Appendix-E / Appendix-F / Doctoral Dissertation Molecular and Cellular Biology 2018
47

Les vésicules extracellulaires comme vecteurs de macromolécules bioactives : modèle du transporteur ABCC7 (CFTR) et application à la biothérapie de la mucoviscidose / Extracellular vesicles as bioactive macromolecules vectors : model of the ABCC7 transporter (CFTR) and application to the biotherapy of cystic fibrosis

Vituret, Cyrielle 18 December 2015 (has links)
La mucoviscidose est une maladie génétique due à des mutations du gène CFTR (Cystic Fibrosis Transmembrane conductance Regulator), conduisant à un défaut d'adressage de la protéine CFTR à la membrane apicale des cellules épithéliales, ou à un déficit de sa fonction de canal à ions chlorure. Ce travail a consisté à étudier les vésicules extracellulaires (EV), microvésicules (MV) et exosomes (Exo), comme vecteurs de la protéine CFTR et de son ARN messager. La preuve de concept du transfert de matériel biologique d'intérêt par l'intermédiaire d'EV, d'abord apportée sur un modèle de cellules animales (CHO), a été validée en cellules humaines. Les EV ont été isolées à partir de surnageant de Calu-3, cellules exprimant la protéine CFTR de manière endogène, et de A549 transduites par le vecteur adenoviral Ad5-GFP-CFTR, surexprimant la protéine de fusion GFP-CFTR. Les cellules cibles choisies, A549 et CF15, étaient déficientes en CFTR. Le transfert s'est révélé plus efficace en système homologue (A549/A549) qu'en système hétérologue (A549/CF15). Par ailleurs, l'utilisation d'inhibiteurs métaboliques suggère que les EV ne suivent pas une voie d'internalisation cellulaire unique, mais que plusieurs mécanismes sont mis en jeu, dont l'endocytose clathrine dépendante et la macropinocytose. Les deux types d'EV sont capables de rétablir la fonction canal associée au CFTR dans les cellules CF15 de façon dose-dépendante, mais avec un effet de seuil minimum. L'activité CFTR reste stable pendant 3 jours, et à un niveau encore détectable après 5 jours. Notre travail démontre l'intérêt potentiel des MV et Exo comme vecteurs de biothérapie de pathologies génétiques / Cystic fibrosis is a genetic disease in which its prognosis depends on the lung damage. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR), resulting in a dysfunctional CFTR protein normally located at the plasma membrane of epithelial cells. This thesis is a study of a novel therapeutic approach to use extracellular vesicles (EVs), microvesicles and exosomes, as transfer vectors for CFTR mRNA and protein to target cells. The proof of concept for the transfer of CFTR mRNA and protein was first done in the CHO hamster model. To validate this concept on human cells, we used human bronchial Calu-3 cells, which express the endogenous CFTR protein, and A549 lung epithelial cells transduced by the adenoviral vector Ad5-GFP-CFTR to overexpress the fusion exogenous protein GFP-CFTR. We show that EVs produced by these cells could transfer a new functionality to CF15 target cells carrying the CFTRdeltaF508 mutation and the transfer seems to be more efficient in a homologous cell system versus a heterologous system. Interestingly, the exosomes seem to be more efficient in CFTR transfer than the microvesicles. A study of the mechanism of EVs cellular uptake show that it is temperature dependent and that endocytosis and macropinocytosis are implicated. Collectively, this study demonstrates the potential application of EVs for CFTR transfer and functional correction of the genetic defect in human CF cells
48

Modulation des réponses inflammatoires par les microparticules / Modulation of inflammatory responses by microparticles

Gaceb, Abderahim 05 December 2014 (has links)
Les microvésicules (MVs) sont des petites vésicules membranaires libérées par les cellules, ayant des effets bénéfiques et/ou délétères dans le sepsis. Nous avons déjà démontré que la délétion de l’isoforme non musculaire de la kinase de la chaîne légère de la myosine (MLCKnm) protège les souris contre le choc endotoxique en réduisant l'inflammation. Ici, nous avons évalué les conséquences de la délétion de MLCKnm sur le phénotype et les effets inflammatoires des MVs au cours du choc endotoxique. La délétion de MLCKnm augmente le taux circulant des MVs et ceux dérivées des cellules progénitrices. Les souris MLCKnm-/- présentent une augmentation du nombre des plaquettes, mais leurs capacité à libérer les MVs est réduite et une diminution du nombre des leucocytes et des MVs leucocytaires. Une diminution du relâchement de l’aorte a été observé chez les souris injectées avec des MVs dérivées des souris MLCKnm+/+ (MVsMLCKnm+/+), mais pas les MVs dérivées des souris MLCKnm-/- (MVsMLCKnm-/-). En présence de lipopolysaccharide (LPS), MVsMLCKnm+/+ augmentent la sécrétion des cytokines pro-inflammatoires par les cellules endothéliales de l’aorte de souris alors que les MVsMLCKnm-/- induisent la libération des cytokines anti-inflammatoires. L’injection des MVsMLCKnm-/-, prévient partiellement l'augmentation du stress oxydatif, nitrosatif, et la dysfonction endothéliale induites au niveau des souris par le LPS. Ces résultats montrent que MLCKnm joue un rôle important dans l'activation cellulaire, la libération des MVs, ainsi que le nombre des cellules circulantes. La délétion de MLCKnm permet de générer des MVs circulantes moins inflammatoires avec un potentiel protecteur. / Microvesicles (MVs), small membrane vesicles released from cells, have beneficial and/or deleterious effects in sepsis. We previously reported that non-muscle myosin light chain kinase (nmMLCK) deletion protects mice against endotoxic shock by reducing inflammation. Here, we evaluated the consequences of nmMLCK deletion on the phenotype and inflammatory effects of cell-derived MVs during endotoxic shock. nmMLCK deletion increased circulating levels of MVs. In nmMLCK-/- mice, platelet count was increased but the platelet ability to release MVs was reduced, and both leukocyte-derived MVs and leukocyte count were reduced. Endothelium-dependent relaxation of aorta was reduced in mice injected with MVs from nmMLCK+/+ (MVsnmMLCK+/+) but not from nmMLCK-/- mice (MVsnmMLCK-/-). In presence of lipopolysaccharide, MVsnmMLCK+/+ increased pro-inflammatory cytokine release by mouse aortic endothelial cells whereas MVsnmMLCK-/- enhanced anti-inflammatory secretome. Injection of MVsnmMLCK-/-, but not MVsnmMLCK+/+, prevented the increase of oxidative and nitrative stresses and reduced endothelial dysfunction in aorta from lipopolysaccharide-treated mice. Altogether, nmMLCK plays an important role in cellular activation and release of circulating MVs. Moreover, nmMLCK deletion generates MVs with low inflammatory properties and high protective effects.
49

Structural Asymmetry of Flaviviruses

Matthew D Therkelsen (6589034) 15 May 2019 (has links)
<p>Flaviviruses are enveloped, positive-strand RNA viruses that are spread by mosquitoes and ticks and can cause serious disease in humans. Flavivirus virions undergo extensive structural changes during their life cycle, including during maturation and fusion. Flaviviruses are initially assembled at the endoplasmic reticulum in a non-infectious, immature state, and then traffic to the trans-Golgi network, where a pH drop triggers a structural rearrangement of glycoproteins prM and E on the virus surface from 60 trimers to 90 dimers. A host protease, furin, then cleaves prM which makes the transition irreversible. Upon exiting the host cell, pr disassociates from the virus and the infectious, mature virus is able to enter a new cell. <br></p><p><br></p> <p> </p> <p>In Chapter 1, an overview of flaviviruses is presented, including a brief history of their discovery and interaction with humans, followed by what is known about their life cycle and the maturation process. The structure of a mature flavivirus is then described, including the symmetrical arrangement of glycoproteins on the virion surface, the lipid membrane, and the nucleocapsid core, followed by an introduction of the structural proteins that assemble into the virion. The structure of the immature flavivirus is then described. The chapter concludes with a description of the dynamics and heterogeneity observed for flaviviruses.</p><p><br></p> <p> </p> <p>The conformational rearrangements that occur during flavivirus maturation remain unclear. The structures of immature and mature flaviviruses determined with cryo-electron microscopy (cryo-EM) demonstrated that flaviviruses are icosahedral particles with 180 copies of glycoproteins on their surface. Icosahedral viruses typically have a quasi-equivalent arrangement of glycoproteins, but flaviviruses lack quasi-equivalence and instead the three subunits within an asymmetric unit occupy different chemical environments. Although the subunits are the same proteins, the unique environment of each subunit can be exploited for tracking subunits during conformational rearrangements. For example, the unique labeling of a subunit can be used to identify it in the immature and mature virion.</p><p><br></p> <p> </p> <p>In Chapter 2, the maturation process was studied by developing tools to differentially label protein subunits and trap potential intermediates of maturation. The tools included heavy-atom compounds and antibody Fabs, which were used to probe Kunjin virus (KUNV), an Australian subtype of West Nile virus (WNV). One heavy-atom compound, potassium tetranitroplatinate(II), was found to derivatize immature KUNV, likely at sites on both E and prM. Higher-resolution studies will be required to determine if the compound differentially labeled the three subunits. The other tool developed was the E16 Fab. E16 Fab, originally isolated from a mouse immunized with WNV E and found to bind to two out of three subunits on mature WNV, was used to differentially label subunits in immature KUNV. Based on poor epitope accessibility on immature KUNV, E16 Fab was hypothesized to trap an intermediate state of maturation. In the cryo-EM reconstruction of E16 Fab bound to immature KUNV it was found that the virion had localized distorted density and apparent non-uniform binding of the E16 Fab. Based on this result it was proposed that flaviviruses had imperfect icosahedral symmetry. <br></p><p><br></p> <p> </p> <p>The structural asymmetry of immature and mature flaviviruses was investigated in Chapter 3. Icosahedral symmetry has always been imposed during cryo-EM reconstructions of flaviviruses, as it led to stable convergence of orientations. When reconstructions of immature KUNV and ZIKV were performed without imposing symmetry, the reconstructions showed that the flaviviruses had an eccentric nucleocapsid core, which was positioned closer to the membrane at one pole. At the opposite pole, the glycoprotein and inner leaflet densities were weak and distorted. Furthermore, there were protrusions from the core that contacted the transmembrane helices of the glycoproteins. In the asymmetric reconstruction of mature KUNV, the core was positioned concentric with the glycoprotein shell, in contrast to the immature virion, indicating that maturation alters the interactions between the core and the glycoproteins. The asymmetric reconstructions suggested that there is variable contact between the core and glycoproteins during assembly, which may be due to membrane curvature restrictions in the budding process. </p> <p> </p> <p><br></p><p>In Chapter 4, extracellular vesicles (EVs) that were released during dengue virus (DENV) infection were characterized by mass spectrometry. EVs may play a significant role in flavivirus infection, as they have been shown to transport both viral proteins and infectious RNA. EVs likely represent alternative modes of virus transmission and aid in immune evasion. However, previous studies on EVs are controversial because EVs are potential contaminated during assays by co-purifying virions and other particulates. The identification of EV biomarkers would greatly reduce contamination because biomarkers would enable isolation of pure EVs by affinity purification. Therefore, a strategy was developed to isolate EVs and profile them with proteomics. The four proteins cystatin-A, filamin B, fibrinogen beta chain, and endothelin converting enzyme 1 were found to be statistically enriched in the DENV sample and represent potential EV biomarkers. </p> <p> </p>
50

Nanoplasmonic Sensing of Disease-associated Extracellular Vesicles - An Ultrasensitive Diagnosis and Prognosis Approach

January 2020 (has links)
abstract: Extracellular vesicles (EVs) are membranous particles that are abundantly secreted in the circulation system by most cells and can be found in most biological fluids. Among different EV subtypes, exosomes are small particles (30 – 150 nm) that are generated through the double invagination of the lipid bilayer membrane of cell. Therefore, they mirror the cell membrane proteins and contain proteins, RNAs, and DNAs that can represent the phenotypic state of their cell of origin, hence considered promising biomarker candidates. Importantly, in most pathological conditions, such as cancer and infection, diseased cells secrete more EVs and the disease associated exosomes have shown great potential to serve as biomarkers for early diagnosis, disease staging, and treatment monitoring. However, using EVs as diagnostic or prognostic tools in the clinic is hindered by the lack of a rapid, sensitive, purification-free technique for their isolation and characterization. Developing standardized assays that can translate the emerging academic EV biomarker discoveries to clinically relevant procedures is a bottleneck that have slowed down advancements in medical research. Integrating widely known immunoassays with plasmonic sensors has shown the promise to detect minute amounts of antigen present in biological sample, based on changes of ambient optical refractive index, and achieve ultra-sensitivity. Plasmonic sensors take advantage of the enhanced interaction of electromagnetic radiations with electron clouds of plasmonic materials at the dielectric-metal interface in tunable wavelengths. / Dissertation/Thesis / Doctoral Dissertation Biomedical Engineering 2020

Page generated in 0.4899 seconds