Spelling suggestions: "subject:"extrinsic manifolds""
1 |
Extrinsic Symmetric Symplectic Spaces/Espaces symétriques extrinsèques symplectiquesRichard, Nicolas 14 September 2010 (has links)
Résumé de la thèse : ce travail porte sur la notion d'espace symétrique symplectique extrinsèque. Ces espaces sont des espaces symétriques symplectiques dont la structure est induite par le plongement dans variété symplectique ambiante munie d'une connexion.
Par analogie à la théorie standard des espaces symétriques, nous démontrons un théorème d'équivalence entre les espaces symétriques symplectiques extrinsèques d'une variété qui est elle-même un espace symétrique symplectique.
La définition d'un espace symétrique symplectique extrinsèque fait intervenir l'existence d'affinités globales de la variété ambiante, les ``symétries extrinsèques', qui induisent la structure symétrique de la sous-variété ; ceci mène à poser une question du type : quelles sont les variétés possédant ``beaucoup' de ces affinités~? Une question précise ainsi qu'une réponse sont fournies dans un contexte où la variété ambiante est seulement supposée munie d'une structure
symplectique et d'une connexion symplectiques. Nous considérons également le cas où ces symétries commutent avec un champ $K$ d'endomorphismes symplectiques fixé de la variété, de carré $pmId$. Nous définissons une notion de courbure sectionnelle pour plans $K$-stables et montrons que les espaces à $K$-courbure sectionnelle constantes sont localement symétriques de type Ricci.
Par suite nous étudions les espaces symétriques symplectiques extrinsèques dans un espace vectoriel symplectique. Nous montrons par exemple qu'un tel espace, s'ils est de dimension deux, est forcément intrinsèquement plat (c.-à-d. à courbure intrinsèque nulle), mais que son image n'est pas forcément un plan affin de l'espace vectoriel ambiant. Nous décrivons en fait explicitement tous les espaces
symétriques symplectiques extrinsèques, dans un espace vectoriel, dont la courbure intrinsèque s'annule identiquement. Nous décrivons également une famille d'exemples d'espaces extrinsèques, dont nous montrons qu'elle fournit la totalité des espaces extrinsèques de codimension $2$, dans un espace vectoriel.
Enfin, nous décrivons quelques exemples d'espaces symétriques symplectiques extrinsèques qui sont totalement géodésiques, dans un espace de type Ricci particulier.
|
2 |
Extrinsic symmetric symplectic spaces / Espaces symétriques extrinsèques symplectiquesRichard, Nicolas 14 September 2010 (has links)
Résumé de la thèse :ce travail porte sur la notion d'espace symétrique symplectique extrinsèque. Ces espaces sont des espaces symétriques symplectiques dont la structure est induite par le plongement dans variété symplectique ambiante munie d'une connexion.<p><p>Par analogie à la théorie standard des espaces symétriques, nous démontrons un théorème d'équivalence entre les espaces symétriques symplectiques extrinsèques d'une variété qui est elle-même un espace symétrique symplectique.<p><p>La définition d'un espace symétrique symplectique extrinsèque fait intervenir l'existence d'affinités globales de la variété ambiante, les ``symétries extrinsèques', qui induisent la structure symétrique de la sous-variété ;ceci mène à poser une question du type :quelles sont les variétés possédant ``beaucoup' de ces affinités~? Une question précise ainsi qu'une réponse sont fournies dans un contexte où la variété ambiante est seulement supposée munie d'une structure<p>symplectique et d'une connexion symplectiques. Nous considérons également le cas où ces symétries commutent avec un champ $K$ d'endomorphismes symplectiques fixé de la variété, de carré $pmId$. Nous définissons une notion de courbure sectionnelle pour plans $K$-stables et montrons que les espaces à $K$-courbure sectionnelle constantes sont localement symétriques de type Ricci.<p><p>Par suite nous étudions les espaces symétriques symplectiques extrinsèques dans un espace vectoriel symplectique. Nous montrons par exemple qu'un tel espace, s'ils est de dimension deux, est forcément intrinsèquement plat (c.-à-d. à courbure intrinsèque nulle), mais que son image n'est pas forcément un plan affin de l'espace vectoriel ambiant. Nous décrivons en fait explicitement tous les espaces<p>symétriques symplectiques extrinsèques, dans un espace vectoriel, dont la courbure intrinsèque s'annule identiquement. Nous décrivons également une famille d'exemples d'espaces extrinsèques, dont nous montrons qu'elle fournit la totalité des espaces extrinsèques de codimension $2$, dans un espace vectoriel.<p><p>Enfin, nous décrivons quelques exemples d'espaces symétriques symplectiques extrinsèques qui sont totalement géodésiques, dans un espace de type Ricci particulier.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0788 seconds