• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation numérique de l'endommagement ductile en formage de pièces massives

Mariage, Jean-François 29 January 2003 (has links) (PDF)
Ce travail consiste en la mise au point d'une méthodologie simplifiée, utilisable industriellement, de réalisation virtuelle de procédés en formage de pièces massives avec la prise en compte de l'endommagement. Ceci permettra de prévoir l'apparition de l'endommagement ductile en cours de formage des pièces. On pourra agir sur les paramètres technologiques pertinents du procédé afin de retarder cet endommagement pour obtenir des pièces saines, ou au contraire favoriser celui-ci afin de simuler des procédés de coupe. Une formulation théorique générale du couplage comportement-endommagement est introduite, prenant en compte une loi d'évolution de l'endommagement ductile. Sur le plan numérique un soin particulier a été apporté à l'intégration locale des équations d'évolution couplées. Deux modèles sont proposés et discutés en détails: le couplage « fort » et le couplage « faible ». L'algorithme d'intégration utilisé est implicite et utilise une méthode classique de prédiction élastique-correction plastique pour le calcul des incréments des variables internes par un schéma de Newton-Raphson. Le calcul de la matrice tangente consistante prend en compte l'influence de l'endommagement ductile. Pour valider cette méthodologie, une large gamme de procédés dont certains sont issus de l'industrie, tels que le découpage de tôle, la compression de cylindres, le forgeage et l'extrusion d'un croisillon, la mise en forme d'un écrou six-pans, le filage,… est présentée, et comparée avec des essais expérimentaux quand cela est possible. La capacité de cette méthodologie à prédire correctement l'initiation et la propagation de l'endommagement en mise en forme est clairement démontrée
2

Fabrication and characterization of new and highly hydrophobic hollow fiber membranes for CO₂ capture in membrane contactors

Mosadegh Sedghi, Sanaz January 2013 (has links)
Dans ce projet de doctorat, des membranes microporeuses (fibres creuses) et hautement hydrophobes à base de polyéthylène basse densité (LDPE) pour utilisation dans la capture du CO2 dans des contacteurs gaz-liquide à membrane (GLMC), ont été fabriquées en utilisant une nouvelle méthode simple, sans solvant ou diluants, autant écologique qu’économique, et qui ne nécessite aucun post-traitement mécanique ou thermique. Pour produire des fibres creuses et contrôler leur porosité, on combine deux techniques, l’extrusion et le lavage de sel. Un mélange de LDPE et de particules de NaCl de différentes concentrations en sel conduit à la production des fibres (par extrusion) qui sont ensuite immergées dans l’eau pour éliminer le sel emprisonné dans le polymère et obtenir autant une structure microporeuse qu’une surface rugueuse hautement hydrophobe. La nouvelle méthode constitue une alternative très prometteuse aux méthodes actuellement utilisées pour la fabrication des membranes hydrophobes, principalement basées sur un processus d'inversion de phase qui implique des solvants toxiques et coûteux. Les membranes fabriquées ont été caractérisées en termes de morphologie, densité, porosité et distribution de taille des pores, hydrophobicité, pression de percée et propriétés mécaniques. Comme le phénomène de mouillage des membranes en contact avec les solutions absorbantes est la cause principale de la réduction de l’efficacité des GLMC à long terme, une étude approfondie sur la compatibilité membrane/liquide absorbant a été réalisée. La stabilité morphologique, chimique et thermique des membranes en contact avec différentes solutions aqueuses d'alcanolamines à base de monoéthanolamine (MEA) et 2-amino-2-hydroxyméthyl-1,3-propanediol (AHPD), ainsi que des mélanges MEA/PZ (pipérazine) et AHPD/PZ, a été investiguée en détail. / In this work, highly hydrophobic low density polyethylene (LDPE) hollow fiber membranes aiming to be used for CO2 capture in gas-liquid membrane contactors (GLMC) were fabricated using a simple, novel method, without solvent or diluents, economic and environmentally friendly, which does not require any mechanical or thermal post-treatments. In order to produce hollow fibers and control their porosity, the process combines melt extrusion and template-leaching techniques. A mixture of LDPE and NaCl particles first produce blends with different salt contents. A microporous structure and a rough highly hydrophobic surface can then be produced by leaching the salt particles from the hollow fiber matrix via immersion in water. The new method represents a very promising alternative to conventional membrane fabrication approaches which are mainly based on phase inversion process that involves toxic and expensive solvents. The fabricated membranes were characterized in terms of morphology, density, porosity and pore size distribution, hydrophobicity, breakthrough pressure and mechanical properties. Since the phenomenon of membrane wetting by liquid absorbents is the major cause of the reduction of long-term efficiency of GLMC, a comprehensive study on the compatibility between membrane and absorbent liquid was performed. Morphological, chemical and thermal stability of LDPE membranes in contact with different aqueous alkanolamine solutions including monoethanolamine (MEA) and 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), as well as blends of MEA/PZ (piperazine) and AHPD/PZ, was investigated in detail.
3

Développement d'un dispositif d'extrusion tridimensionnelle de sucre vitrifié pour la production de réseaux fluidiques complexes par moulage rapide

Dussault, Marc. 24 April 2018 (has links)
L’objectif du vaste projet de recherche dans lequel s’inscrit ce mémoire est de guérir le diabète de type 1 en fabriquant un pancréas bioartificiel vascularisé contenant des cellules bêta (i.e. les cellules sécrétant l’insuline). Ce dispositif permettrait de rendre aux personnes atteintes par le diabète de type 1 la capacité de sécréter par elles-mêmes de l’insuline et de réguler leur glycémie. La vascularisation est actuellement un enjeu de taille dans le domaine du génie tissulaire. La plupart des tissus incorporant des cellules générées par le génie tissulaire sont actuellement fortement limités en épaisseur faute d’être vascularisés adéquatement. Pour les tissus dont l’épaisseur dépasse 400 μm, la vascularisation est nécessaire à la survie de la plupart des cellules qui autrement souffriraient d’hypoxie, les empêchant ainsi d’accomplir leurs fonctions [1]. Ce mémoire présente le développement et la mise en service d’un dispositif d’extrusion tridimensionnelle de sucre vitrifié pour la vascularisation d’un pancréas bioartificiel. Ce dispositif a été développé au laboratoire de recherche sur les procédés d’impression 3D ainsi qu’au bureau de design du département de génie mécanique de l’Université Laval. Grâce à cette technique d’impression 3D novatrice et à la caractérisation du procédé, il est maintenant possible de produire rapidement et avec précision des structures temporaires en sucre vitrifié pour la fabrication de réseaux vasculaires tridimensionnels complexes. Les structures temporaires peuvent, après leur production, être utilisées pour réaliser le moulage rapide de constructions vascularisées avec des matériaux tels que du polydiméthylsiloxane (PDMS) ou des hydrogels chargés de cellules biologiques. De par la nature du matériel utilisé, les moules temporaires peuvent être facilement et rapidement dissous dans une solution aqueuse et laisser place à un réseau de canaux creux sans créer de rejets toxiques, ce qui représente un avantage majeur dans un contexte de bio-ingénierie. / The overall goal of this broad research project, within which this master project took place, is to cure type 1 diabetes. We aim to produce a vascularized bioartificial pancreas that would be made of beta cells embedded in a hydrogel (i.e. insulin secreting cells). This organ would restore to type 1 diabetics the self-capacity to secrete insulin, thus to control in real time their glycaemia. Vascularization is currently a major issue in the field of tissue engineering. Most tissues produced by TE are limited in thickness due to the lack of adequate vasculature. To engineer a tissue thicker than 400 μm, vascularization is mandatory for most of the cells to survive [1]. The lack of adequate vascularization leads to hypoxia and hinders cells to fulfill their functions. This thesis presents the development and the commissioning of a 3D sugar glass extrusion apparatus for the vascularization of a bioartificial pancreas. This apparatus was developed at the “laboratoire de recherche sur les procédés d’impression 3D” and at the “bureau de design” in the mechanical engineering department of Université Laval. With this pioneering 3D printing technology, it is now possible to rapidly and precisely produce temporary sugar glass template that can then be used to produce complex 3D vascular networks. After the printing process, the temporary template is used as a mold for the rapid casting of vascularized constructs made with materials such as polydimethylsiloxane (PDMS) or cellladen hydrogels. Due to the nature of the material used, the temporary lattices can be dissolved in an aqueous medium without releasing any cytotoxic byproducts and in a fast and easy fashion. This feature is a major advantage in the context of bioengineering.

Page generated in 0.0952 seconds