321 |
Diffractive Optics Near-field Laser Lithography for Fabrication of 3-dimensional Periodic NanostructuresChanda, Debashis 23 September 2009 (has links)
The main objective of the present research work is to fabricate three dimensional photonic nanostructures in photo-sensitive polymers using a novel diffractive optical element (DOE) based lithography technique. A diffractive optical element is a promising alternative device for 3D fabrication where one DOE creates multiple laser beams in various diffraction orders that are inherently phase-locked and stable for reproducible creation of 3D near-field
diffraction patterns from a single laser beam. These near-field patterns are captured inside a photosensitive material like photoresist to fabricate 3D photonic crystal templates. We have demonstrated fabrication of a wide range of 3D structures having different crystal symmetries and different relative crystal axis ratios. The present work has provided 3D photonic crystal nanostructures with uniform optical and structural properties over large sample area (~3-4 mm diameter) and through large 15-50 micron thickness with large number of layers (> 40) having period 550 nm - 650 nm and feature sizes between 200 nm and 300 nm. The short exposure time and small number of process steps shows promise for scaling
to very large volume fabrication, dramatically improving the throughput, quality and structural uniformity of 3D periodic nanostructures, especially over that provided by tedious and costly semiconductor processing technology. The diffractive optics lithography is a parallel
processing method that is easily scalable to generate centimeter-scale 3D nanostructures
having large number of layers in several seconds. Due to low refractive index contrasts these polymer templates possess partial stopgaps along several crystallographic directions which
can be practically used in several device or sensor applications where complete bandgap is
not necessary. The potential usefulness of these partial stopbands for refractive index sensing of liquids has been demonstrated. These low refractive index polymer structures have been inverted with amorphous silica to convert a "soft" polymer structure to a robust "hard" structure. Further, few preliminary tests were done in fabricating 3D nanostructures into micro-fluidic channels for potential chromatography applications. The practical merits of
this 3D fabrication technique will enable new practical manufacturing methods for optical and MEMS applications of 3D micro and nano structures.
|
322 |
Diffractive Optics Near-field Laser Lithography for Fabrication of 3-dimensional Periodic NanostructuresChanda, Debashis 23 September 2009 (has links)
The main objective of the present research work is to fabricate three dimensional photonic nanostructures in photo-sensitive polymers using a novel diffractive optical element (DOE) based lithography technique. A diffractive optical element is a promising alternative device for 3D fabrication where one DOE creates multiple laser beams in various diffraction orders that are inherently phase-locked and stable for reproducible creation of 3D near-field
diffraction patterns from a single laser beam. These near-field patterns are captured inside a photosensitive material like photoresist to fabricate 3D photonic crystal templates. We have demonstrated fabrication of a wide range of 3D structures having different crystal symmetries and different relative crystal axis ratios. The present work has provided 3D photonic crystal nanostructures with uniform optical and structural properties over large sample area (~3-4 mm diameter) and through large 15-50 micron thickness with large number of layers (> 40) having period 550 nm - 650 nm and feature sizes between 200 nm and 300 nm. The short exposure time and small number of process steps shows promise for scaling
to very large volume fabrication, dramatically improving the throughput, quality and structural uniformity of 3D periodic nanostructures, especially over that provided by tedious and costly semiconductor processing technology. The diffractive optics lithography is a parallel
processing method that is easily scalable to generate centimeter-scale 3D nanostructures
having large number of layers in several seconds. Due to low refractive index contrasts these polymer templates possess partial stopgaps along several crystallographic directions which
can be practically used in several device or sensor applications where complete bandgap is
not necessary. The potential usefulness of these partial stopbands for refractive index sensing of liquids has been demonstrated. These low refractive index polymer structures have been inverted with amorphous silica to convert a "soft" polymer structure to a robust "hard" structure. Further, few preliminary tests were done in fabricating 3D nanostructures into micro-fluidic channels for potential chromatography applications. The practical merits of
this 3D fabrication technique will enable new practical manufacturing methods for optical and MEMS applications of 3D micro and nano structures.
|
323 |
A Multi-Physics Computational Approach to Simulating THz Photoconductive Antennas with Comparison to Measured Data and Fabrication of SamplesBoyd, Darren Ray 01 January 2014 (has links)
The frequency demands of radiating systems are moving into the terahertz band with potential applications that include sensing, imaging, and extremely broadband communication. One commonly used method for generating and detecting terahertz waves is to excite a voltage-biased photoconductive antenna with an extremely short laser pulse. The pulsed laser generates charge carriers in a photoconductive substrate which are swept onto the metallic antenna traces to produce an electric current that radiates or detects a terahertz band signal. Therefore, analysis of a photoconductive antenna requires simultaneous solutions of both semiconductor physics equations (including drift-diffusion and continuity relations) and Maxwell’s equations. A multi-physics analysis scheme based on the Discontinuous-Galerkin Finite-Element Time-Domain (DGFETD) is presented that couples the semiconductor drift-diffusion equations with the electromagnetic Maxwell’s equations. A simple port model is discussed that efficiently couples the two equation sets. Various photoconductive antennas were fabricated using TiAu metallization on a GaAs substrate and the fabrication process is detailed. Computed emission intensities are compared with measured data. Optimized antenna designs based on the analysis are presented for a variety of antenna configurations.
|
324 |
Conception, fabrication et caractérisation de nouveaux dispositifs de FDSOI avancés pour protection contre les décharges électrostatiques / Conception, fabrication and characterization of new advanced FDSOI devices for ESD robustness and performanceAthanasiou, Sotirios 17 January 2017 (has links)
Ce sujet de thèse a pour objectif principal la conception de protection contre les décharges électrostatiques (ESD) en technologie silicium avancée sur isolant film mince (FDSOI) avec la compatibilité substrat massif. Ceci suppose une caractérisation ESD des dispositifs élémentaires déjà existants et une conception complète de nouveaux dispositifs sur technologie FDSOI. Ces caractérisations se feront, soit en collaboration avec les équipes de caractérisation ESD présents à STMicroelectronics-Crolles, soit directement par le doctorant grâce au banc de test ESD présent dans le laboratoire pour les développements plus en amont si besoin. La caractérisation fine des mécanismes physiques et des performances des composants sera menée à IMEP qui dispose des équipements adéquats (bancs de mesures en basse et haute température, bruit, pompage de charge, etc) et d’une compétence scientifique incontournable. Il sera ensuite nécessaire d’effectuer des choix de stratégies de protection ESD en fonction des applications et des circuits visés par les équipes de STMicroelectronics. On gardera à l’esprit la notion de fiabilité dès la conception de la protection. Une des stratégies envisagée pour la réalisation de protections ESD compatibles avec des films ultra-minces est l’intégration de ces dispositifs sur substrats hybrides. En effet, il a été démontré chez STMicroelectronics en partenariat avec le LETI qu’il était possible de co-intégrer à partir d’un substrat SOI des dispositifs FDSOI ainsi que des dispositifs bulk. Ceci est rendu possible au moyen d’un réticule supplémentaire qui permet de venir retirer le film de silicium et l’oxyde enterré aux endroits voulus. Ainsi la protection ESD est similaire à celle réalisée sur silicium massif mais avec des implantations compatibles avec des dispositifs à film mince. Les dispositifs sont donc sensiblement différents de ceux réalisés sur bulk et nécessitent une caractérisation approfondie afin de les optimiser au mieux. Une approche ambitieuse vise à concevoir des composants SOI inédits, utilisables pour la protection ESD. Ce volet du travail sera en autre effectué sous la responsabilité de l’IMEP qui a récemment inventé et publié plusieurs types de transistors révolutionnaires : Z2-FET, TFET et BET-FET [12-14].Les études se feront sur des dispositifs silicium sur isolant issus des technologies de fabrication STMicroelectronics. Pour ce faire, il sera nécessaire d’appréhender les techniques de fabrication. Dans ce cadre, une simulation des processus de fabrication est envisagée sous la chaîne d’outil ISE-TCAD en C20nm et technologies futures. Tout d’abord ceci permettra d’embrasser l’ensemble des possibilités inhérentes à la création de nouveaux composants dans la technologie considérée et ensuite cette étude préliminaire fournira des structures de simulation pour les configurations ESD. Parallèlement, les outils TCAD de simulation physique du semi-conducteur à gap indirect type silicium seront mis à profit pour étudier plus précisément le comportement du composant élémentaire de protection ESD. Ces éléments peuvent être par exemple de type : diode, ggNMOS, Tr BIMOS, SCR ou SCR, T2, Beta-matrice, PPP… La synergie avec l’IMEP est essentielle pour l’identification et l’analyse des mécanismes physiques gouvernant le fonctionnement des dispositifs. Notamment, l’objectif principal est d’intégrer la protection ESD dans son application finale et d’évaluer son efficacité et son dimensionnement par l’intermédiaire de paramètres géométriques par exemple. Il sera également possible de réaliser des simulations mixtes afin de mieux tenir compte des effets 3D de la structure (effet de coins, dépolarisation de substrat) et de connaître l’influence des circuits de déclenchement associés à cette protection. L’optimisation de l’implantation de la protection ESD sera alors envisageable au regard des résultats de simulation. On se place ici dans le cadre d’une démarche de Co-Design de protection ESD. / "The thesis main objective is the design of protection againstelectrostatic discharge (ESD), for deep submicron (DSM)state-of-the-art fully depleted silicon-on-insulator technology (FDSOI).This requires the ESD characterization of existing elementary devicesand design of new FDSOI devices. The detailed characterization of thephysical mechanisms and device performance will be conducted at IMEPwhich has adequate facilities and scientific competence in this field.It will then be necessary to make choices for ESD protectionstrategies based on circuit applications by STMicroelectronics. Anambitious approach aims to develop novel SOI components used for ESDprotection. This part of the work will be performed under theresponsibility of IMEP as it has has recently invented and publishedseveral types of revolutionary transistors Z 2-FET, TFET andBET-FET. It will be necessary to understand the fabrication processtechnology of STMicroelectronics. In this framework, 3D simulation ofthe technology will be performed on TCAD software for 28nm FDSOI andfuture technologies. Physical simulation, with TCAD tools of thesemiconductor will be used to study more precisely the behavior of theelementary devices of ESD protection. Collaboration with the IMEP isessential for the identification and analysis of the physicalmechanisms governing device operation.In particular, the main objective is to integrate ESD protection andevaluate its effectiveness and design. It will also be possible toperform mixed-mode simulation to better analyse the effects of the 3Dstructure (corner effects, depolarization of substrate) and evaluatethe influence of trigger circuits associated with this protection.Optimizing the implementation of ESD protection will then be possible.Having studied from a theoretical point of view and numericalsimulation, ESD protection cells and trigger circuits associated withthe ESD protection strategy, qualification on silicon will be applied.This will be done by a test vehicle in the chosen SOI technology, andelectrical characterization of the structures and protection networkswill follow. Finally, the ESD performance will be analyzed to provideoptimization of the design and the choice of ESD protection strategybased on targeted applications."
|
325 |
Technologie de fabrication et analyse de fonctionnement d'un système multi-physique de détection de masse à base de NEMS co-intégrés CMOS / Technology development and analysis of a multiphysic system based on NEMS co-integrated with CMOS for mass detection applicationPhilippe, Julien 10 December 2014 (has links)
Ces dernières décennies ont vu l'émergence des microsystèmes électromécaniques (MEMS) grâce notamment aux techniques de fabrication employées dans l'élaboration des transistors. L'utilisation de différentes propriétés physiques (électroniques, mécaniques, optiques par exemple) a permis la construction d'un large panel de capteurs miniaturisés. Résultant de la miniaturisation sub-micrométrique des MEMS, les nanosystèmes électromécaniques (NEMS) constituent un tout nouveau type d'objet permettant d'adresser des applications nécessitant un très haut niveau de sensibilité et de résolution, comme la détection de gaz, la spectrométrie de masse ou la reconnaissance de molécules faisant traditionnellement appel à des machines très volumineuses. L'utilisation de ces NEMS requiert cependant un circuit électronique CMOS afin de lire et d'exploiter le signal en sortie de résonateur et servant également à la mise en place d'une boucle oscillante (boucle à verrouillage de phase ou boucle auto oscillante par exemple), architecture idéale pour la détection de masse en temps réel. L'intégration du circuit CMOS avec les résonateurs NEMS constitue un aspect critique quant à la fabrication de capteurs de haute performance. La solution optimale consiste à intégrer de manière monolithique ces deux parties sur la même puce, permettant ainsi de réduire la dimension du capteur et d'améliorer la transmission du signal électrique entre les résonateurs et le circuit CMOS. Cette thèse propose dans un premier temps d'analyser l'intérêt de cette co-intégration du point de vue électrique. Dans un second temps, cette thèse portera sur le développement d'une approche originale visant à co-intégrer de manière monolithique les nano résonateurs au-dessus du circuit CMOS et des interconnexions. La dernière partie portera sur le design d'un détecteur de masse composé d'un réseau compact de NEMS co-intégré CMOS. / During these last decades, Very Large Scale Integration (VLSI) techniques, well developed for transistors, have been used for the Micro ElectroMechanical Systems (MEMS) devices. Thanks to the combination of different physical properties (such as electronic, mechanical, optical etc.) the fabrication of various kinds of miniaturized sensors has been made possible. The sub-µm downscaling of MEMS has allowed the emergence of a new kind of devices called NEMS (for Nano ElectroMechanical Systems) and the possible use of the electromechanical systems in specific applications in which a high level of sensitivity and resolution is necessary, such as gas sensing, mass spectrometry and molecules recognition, to replace traditional bulky machines. Nevertheless, the use of these NEMS requires a CMOS electronic to enhance NEMS resonators readout and to implement closed-loop oscillators (e.g. phase-locked loop or self-oscillating loop) that provide real-time mass measurements. The integration of the electronic circuit with the resonators is a critical aspect for the fabrication of high performance sensors. The best way consists in monolithically processing these two parts on the same die allowing a size reduction of the sensor and an optimal signal transmission between the NEMS resonators and the CMOS circuit. In a first time, this thesis proposes to analyze the interest of this co integration from an electrical point of view. In a second time, this thesis deals with the development of a 3D co integration in which the nano resonators are fabricated above the CMOS circuit and the interconnections. The final part is focused on the layout design considerations for the implementation of a compact mass sensor based on a NEMS array co integrated with a CMOS.
|
326 |
Etude et développement d'un système de signalisation holographique / Study and development of a holographic signalling systemLeroy, Benjamin 06 June 2018 (has links)
Les travaux de cette thèse ont porté sur la conception et la réalisation d'un dispositif d'éclairage surfacique à géométrie planaire à base de structures plasmoniques, pour un fonctionnement à 633nm. Ce dispositif sera capable de convertir une lumière incidente cohérente en un faisceau de sortie uniforme sur la surface du dispositif, collimaté et avec un angle prédéfini par rapport au plan du dispositif. Pour réaliser ce dispositif, la solution envisagée est l'utilisation d'un réseau de guides d'onde diélectriques pour répartir la lumière sur la surface, et de chaînes de nano-structures d'argent couplées aux guides, dimensionnées comme des antennes pour réémettre la lumière hors du plan.Les travaux réalisés ont mis en évidence le contrôle du couplage entre le guide d'onde et la chaine de nano-structures d'argent, modulable par plusieurs paramètres dans une gamme comprise entre 10% et 90 % : nombre de particules, dimensions des particules, distance entre le guide et les particules. En jouant sur la période de la chaine, il est possible d'obtenir un rayonnement hors-plan, avec un angle déterminé par la formule des réseaux de diffraction. Des émetteurs élémentaires, composés d’un guide et de chaines de particules, ont été fabriquées en salle blanche et caractérisés sur un banc d’optique guidée à l'aide d'un montage de projection dans le plan de Fourier. Les diagrammes de rayonnement expérimentaux sont en accord avec les simulations. De premiers résultats ont également confirmé expérimentalement la possibilité de moduler le couplage guide-chaine en modifiant les dimensions des particules. Enfin le réseau de guides d'onde a été dimensionné pour une surface d'1 cm² et fabriqué en lithographie par projection. Les pertes linéiques mesurées dans les guides d'onde sont de l'ordre de 5 dB/mm. Plusieurs optimisations peuvent être réalisées pour améliorer la qualité des guides. A partir des données expérimentales obtenues et des simulations de propagation de faisceau, une configuration réaliste de dispositif d’éclairage incluant le nombre et le positionnement des émetteurs sur le réseau de guides a été proposée. L’ensemble des travaux réalisés valident l’approche choisie. / This work has focused on the design and realization of a planar lighting device based on plasmonic structures, for a 633nm operation. This device will be able to convert a coherent incident light into a uniform output beam over the surface of the device, collimated and with a predefined angle with respect to the plane of the device. To achieve this feature, the proposed solution is the use of an array of dielectric waveguides to distribute the light over the surface, and silver nanostructures chains coupled to the waveguides and dimensioned as antennas to retransmit the light out of the plane. The work carried out has highlighted the control of the coupling between the waveguide and the silver nanostructures chain, modulated by several parameters in a range between 10% and 90%: the number of particles, particle size, distance between the guide and the particles. By playing on the period of the chain, it is possible to obtain an out-of-plane radiation, with an angle determined by the diffraction gratings formula. Elementary emitters, consisting of a guide and particle chains, were manufactured in a clean room and characterized on a guided wave optical bench with Fourier plane projection set-up. The experimental radiation patterns are in agreement with the simulations one. First results have also experimentally confirmed the possibility of modulating the waveguide-chain coupling by modifying the dimensions of the particles. Finally, the waveguide network has been dimensioned for an 1 cm² surface and manufactured with projection lithography. The linear losses measured in the waveguides are of the order of 5 dB / mm. Several optimizations can be made to improve the quality of the guides. From the experimental data obtained and the beam propagation simulations, a realistic configuration of the lighting device including the number and positioning of the transmitters on the waveguide network has been proposed. All the works carried out validate the chosen approach.
|
327 |
Réalisation de pièces aéronautiques de grandes dimensions par fabrication additive WAAM / Manufacturing of large scale components for aircraft industry with WAAM processQuerard, Vincent 10 January 2019 (has links)
Dans le domaine de la fabrication additive plusieurs technologies cohabitent et présentent des maturités et des applications différentes : le lit de poudre, la projection de poudre et le dépôt de fil pour ne citer que les principales. Nous avons étudié, dans le cadre de cette thèse, la réalisation de pièces de grandes dimensions du domaine aéronautique en alliage d’aluminium, par technologie WAAM (Wire Arc Additive Manufacturing) robotisée. Cette technologie repose sur l’utilisation un générateur de soudure à l'arc, d’un système de protection gazeuse et d’un système d'alimentation en métal d'apport sous forme de fil. Pour répondre à cette problématique, plusieurs voies de recherche ont été investiguées. La première traitait principalement de la génération de trajectoires : Plusieurs expérimentations ont permis de montrer l’intérêt et l’importance de la génération de trajectoires et notamment la maitrise de l’orientation outil pour la fabrication additive de pièces complexes en étudiant le respect de la géométrie souhaitée. La seconde concernait l’étude de la santé matière des pièces fabriquées. Des observations au niveau de la microstructure, mais aussi des caractéristiques mécaniques ont permis de mettre en évidence l’influence des paramètres opératoires sur la qualité de la matière déposée. Enfin, la réalisation de pièces fonctionnelles dans le cadre d’un projet financé par la DGA/DGAC et dont les partenaires étaient : STELIA, CONSTELLIUM, CT INGENIERIE et l’Ecole Centrale de Nantes, a permis de mettre en avant l’intérêt du procédé pour la fabrication de pièces aéronautiques. Un élément de structure aéronautique composé de raidisseurs a été fabriqué avec le procédé WAAM sur un substrat double courbure en alliage aluminium. Les difficultés accrues de réalisation ont pu être levées par l'emploi de la méthodologie développée dans le cadre de la thèse. / In the field of additive manufacturing (AM), several processes are present and have different applications and levels of development: the main technologies are powder-bed based AM, powder projection and Wire Additive Manufacturing (WAM). We have studied, in this PhD work, the manufacturing of large scale components in aluminum alloy for aircraft industry with Wire Arc Additive Manufacturing (WAAM). This technology is based on a welding generator, a shielding gas protection and a feedstock (wire in this case). To solve this issue, several ways of research were investigated. The first one dealt with toolpath generation: several experiments have highlighted the importance of tool path generation and the tool orientation to manufacture complex parts and improve the part accuracy. The second one was about the validation of the material quality after deposit. Microstructural observations and mechanical tests have demonstrated the effect of process parameters on the deposit quality. Finally, in the context of a DGA/DGAC funded research project, whose partners were STELIA, CT INGENIERIE, CONSTELLIUM and l’Ecole Centrale de Nantes, the manufacturing of functional part in aluminum alloy has shown the interest of the process for aircraft industry. A structural component based on a double curvature geometry has been manufactured with WAAM. The methodologies developed in this PhD work have enabled us to solve the issues to manufacture that type of component.
|
328 |
Homogenization method for topology optmization of struc-tures built with lattice materials. / Méthode d'homogénéisation pour l'optimisation topologique de structures composées de matériau latticeGeoffroy donders, Perle 17 December 2018 (has links)
Les développements récents des méthodes de fabrication additive permettent aujourd'hui d'envisager l'usinage de pièces à la topologie complexe, composées de microstructures. Ceci ranime l'intérêt pour les méthodes d'optimisation topologique par méthode d'homogénéisation, développées dans les années 80 et quelque peu oubliées par manque d'applications industrielles.L'objectif de cette thèse est de fournir des méthodes d'optimisation topologique pour des structures constituées de matériau lattice localement périodique, c'est-à-dire dont la microstructure est modulée au sein de la pièce.Trois phases ont été définies. La première consiste à calculer les propriétés élastiques homogénéisées de microstructures en fonction de paramètres définissant leur géométrie. Dans la seconde étape, on optimise la structure constituée de matériau homogénéisé selon les paramètres géométriques de la microstructure ainsi que son orientation. Une structure homogénéisée n'est pas usinable en l'état. En effet, l'homogénéisation revient à considérer que la taille des cellules la composant converge vers zéro. Dans une troisième étape, on propose donc de déshomogénéiser la structure optimisée, c'est-à-dire de construire une suite de structures convergeant vers elle. Pour cela, on introduit un difféomorphisme déformant une grille régulière de sorte que chaque cellule soit orientée selon l'orientation optimale.Nous présentons dans cette thèse les détails de cette méthode, pour des microstructures élastiques isotropes et orthotropes, en deux et en trois dimensions.Nous proposons également un couplage de cette méthode avec la méthode d'optimisation de forme par les lignes de niveau, ce qui permet notamment d'inclure des contraintes géométriques sur les structures finales. / Thanks to the recent developments of the additive manufacturing processes, structures built with modulated microstructures and featuring a complex topology are now manufacturable. This leads to a resurrection of the homogenization method for shape optimization, an approach developed in the 80’s but which progressively faded away because yielding too complex structures for manufacturing processes at this time.The goal of this thesis is to develop shape optimization methods for structures built with modulated locally periodic lattice microstructures.Three steps have been defined. The first consists in computing the homogenized, or effective, elastic properties of microstructures according to few parameters characterizing their geometry. In the second step, the geometric properties of the microstructure and its orientation are optimized in the working domain, yielding a homogenized optimized structure. Such a structure is nevertheless not straightforwardly manufacturable. Indeed, the homogenization is equivalent to have a structure featuring cells whose size is converging to zero. Hence, in the third and last step, a deshomogenization process is proposed. It consists in building a sequence of genuine structures converging to the homogenized optimal structures. The key point is to respect locally the orientation of the cells, which is performed thanks to a grid diffeomorphism.In this thesis, we present the details of the whole method, for isotropic and orthotropic microstructures, in 2D and in 3D.A coupling of this method with the level-set shape optimization method is also presented, thanks which the set of geometric constraints on the final structures may be enlarged.
|
329 |
Stability-aware simplification of curve networksNeveu, William 07 1900 (has links)
La conception de réseaux de courbes nécessite la considération de plusieurs facteurs: la stabilité de la structure, l'efficience matérielle, et l'aspect esthétique - des objectifs complexes et interdépendants rendant la conception manuelle difficile.
Nous présentons une nouvelle méthode permettant de simplifier des réseaux de courbes destinés à la fabrication. Pour un ensemble de courbes 3D donné, notre algorithme en sélectionne un sous-ensemble stable. Bien que la stabilité soit traditionnellement mesurée par l'ordre de grandeur des déformations entraînées par des charges prédéfinies, une telle approche peut s'avérer limitante. Elle ne tient ni compte des effets de vibration pour les structures de grandes tailles, ni des multiples possibilités de forces appliquées pour les structures et objets de plus petite taille. Ainsi, nous optimisons directement pour une déformation minimale avec la charge dans le pire des cas (de l'anglais "worst-case").
Notre contribution technique est une nouvelle formulation de la simplification de réseaux de courbes pour la stabilité dans le pire des cas. Celle-ci mène à un problème d'optimisation semi-définie positive en nombres entiers (MI-SDP). Malgré que résoudre ce problème MI-SDP directement est irréaliste dans la plupart des cas, une intuition physique nous mène à un algorithme vorace efficace. Enfin, nous démontrons le potentiel de notre approache à l'aide plusieurs réseaux de courbes et validons l'efficacité de notre méthode en la comparant de façon quantitative à des approaches plus simples. / Designing curve networks for fabrication requires simultaneous consideration of structural stability, cost effectiveness, and visual appeal - complex, interrelated objectives that make manual design a difficult and tedious task. We present a novel method for fabrication-aware simplification of curve networks, algorithmically selecting a stable subset of given 3D curves. While traditionally, stability is measured as the magnitude of deformation induced by a set of predefined loads, predicting applied forces for common day objects can be challenging. Instead, we directly optimize for minimal deformation under the worst-case load. Our technical contribution is a novel formulation of 3D curve network simplification for worst-case stability, leading to a mixed-integer semi-definite programming problem (MI-SDP). We show that while solving MI-SDP directly is impractical, a physical insight suggests an efficient greedy heuristic algorithm. We demonstrate the potential of our approach on a variety of curve network designs and validate its effectiveness compared to simpler alternatives using numerical experiments.
|
330 |
Méthodologie de conception pour la fabrication additive, application à la projection de poudresPonche, Rémi 23 October 2013 (has links) (PDF)
Dans le contexte d'un marché saturé et d'une forte concurrence internationale, les industriels doivent proposer des produits manufacturés innovants, de qualité et respectant des contraintes de coûts et de délais de plus en plus exigeantes. La fabrication additive permet aujourd'hui l'obtention de pièces fonctionnelles, elle apparaît, dès lors, comme l'un des moyens de mise en œuvre d'une production personnalisée répondant aux problématiques actuelles. Ne nécessitant pas d'outillage dédié ni de brut de matière, les procédés additifs apportent de nouvelles perspectives quant au triptyque Produit-Process-Matériau. D'un autre côté, comme tous les autres procédés, ils ont leurs propres spécificités et contraintes liées aux phénomènes physiques mis en jeu au cours du processus de fabrication. Tirer profit de la rupture technologique que représente la fabrication additive implique donc de concevoir les produits autrement. Ce travail de thèse consiste en l'élaboration d'une méthodologie de conception orientée fabrication additive. Organisée en quatre étapes, la méthode permet, à partir du cahier des charges fonctionnel et des caractéristiques du procédé de fabrication utilisé, de définir une géométrie de pièce optimisée, à la fois, vis-à-vis des objectifs fonctionnels et des contraintes de fabricabilité. Un domaine de conception est, dans un premier temps, établi à partir des entités fonctionnelles et d'un choix d'orientations de fabrication. La topologie générale du produit y est alors optimisée vis à vis des critères globaux issus des spécifications fonctionnelles et des règles métier globales. La géométrie locale est ensuite définie à partir d'un choix de trajectoires de fabrication et de la simulation du processus de fabrication. Enfin, chaque choix lié à la stratégie de fabrication débouchant sur une géométrie de pièce différente, la dernière étape consiste à identifier celle répondant le mieux aux spécifications attendues. La méthodologie a l'avantage d'être générique dans sa structure et peut être utilisée pour les différents procédés employés pour la fabrication directe. Les contraintes de fabrications sont cependant spécifiques à chaque procédé car liés aux phénomènes physiques mis en jeu au cours des processus de fabrication. Dans le cadre de nos travaux de thèse, nous nous sommes particulièrement intéressés à la technologie de fabrication par projection de poudres. Ainsi, un modèle du processus de fabrication a été mis en place. Il permet d'évaluer et d'optimiser les stratégies de fabrication vis-à-vis des besoins fonctionnels, en permettant de prédire la géométrie finale des pièces, et des contraintes procédés en permettant de prédire les variations de paramètres de fabrication. Ce modèle a été particulièrement mis à profit au cours de nos travaux pour alimenter la méthode d'optimisation de trajectoires, par ailleurs proposée, pour la fabrication de pièces à parois minces.
|
Page generated in 0.141 seconds