• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Part Programming Process for Wire and Arc Additive Manufacturing

Jonsson Vannucci, Tomas January 2019 (has links)
Wire and Arc Additive Manufacturing is a novel Additive Manufacturing technology. As a result, the process for progressing from a solid model to manufacturing code, i.e. the Part Programming process, is undeveloped. In this report the Part Programming process, unique for Wire and Arc Additive Manufacturing, has been investigated to answer three questions; What is the Part Programming process for Wire and Arc Additive Manufacturing? What are the requirements on the Part Programming process? What software can be used for the Part Programming process? With a systematic review of publications on Wire and Arc Additive Manufacturing and related subjects, the steps of the Part Programming process and its requirements have been clarified. The Part Programming process has been used for evaluation of software solutions, resulting in multiple recommendations for implemented usage. Verification of assumptions, made by the systematic review, has been done by physical experiments to give further credibility to the results.
2

Wire and Arc Additive Manufacturing : Topology Optimised Vehicle Component

Petersson, Malte January 2022 (has links)
Wire and arc additive manufacturing (WAAM) is a manufacturing method using a numerical controlled motion system and a welding system to additively manufacture three dimensional components. The motion system is programmed from three dimensional computer aided design model data (3D-CAD) of the intended geometry which is then sliced in to layers and welded on additively. There are seven process categories within additive manufacturing (AM), each with their own benefits and drawbacks. One of these process categories is directed energy deposition (DED) which uses an energy source to melt material onto a build plate. Instead of filling the build plate with material and selectively melting or sintering the material, DED only deposit material which is to be melted. WAAM is a process within the DED process category. BAE Systems Hägglunds manufactures relatively large components with requirements for mass reduction. Hägglunds has therefor invested in a WAAM laboratory, for testing and investigation on how to utilize this technology to their advantage. During the master thesis a geometrical correlation between the overhang angle and the material deposition on the edges of the overhangs has been found. A slicing strategy utilising this correlation has proven useful in combatting an issue where the top surface of a parallelepiped ends up unwantedly not parallel to the substrate plate. This master thesis has also increased the capability from 30° to 45° overhang angle. A numeric simulation of cooling times in the WAAM process has been developed. The simulation had a maximum error of one minute or about 69 % longer measured than simulated cooling time at worst case.
3

Preparing parts for Wire and Arc Additive Manufacturing (WAAM) and net-shape machining

Koskenniemi, Isak January 2019 (has links)
WAAM is a relatively unexplored additive manufacturing method. Although research in this area has been performed for some years and the hardware is relatively cheap, the method is not widely used. As the name suggest, it uses wire and an arc welding equipment to deposit beads on top of each other to create a geometry. As WAAM is a near net-shape method, the parts must be machined to its net-shape after the beads has been deposited. BAE Systems Hägglunds AB are investigating the use of WAAM in an industrial robot cell and this Master’s thesis has been written with the purpose of enabling the use of WAAM for manufacturing parts at the company. This report investigates how a part is prepared for WAAM and near net-shape machining. A formula for approximating the cost of manufacturing a part is investigated. A software for slicing a .STL file for generating a toolpath is developed in Matlab. The software then exports the toolpath to a code that the robot can read. It can also generate a digital model of the work piece for net-shape machining through CATIA macro. A model for calculating the cost of using the WAAM-cell once the toolpath for a part is known is presented. The investigated areas and the developed software are then applied to a part, and the results of the report is discussed.
4

Wire and Arc Additive Manufacturing : Pre printing strategy for torque arm

Karlsson, Mattias, Magnusson, Axel January 2020 (has links)
Wire and Arc Additive Manufacturing (WAAM) is a novel Additive manufacturing method. It is a high deposition rate process which can be suitable for producing low to medium quantities of medium to large sized components. Because it is such a novel method, there are still somechallenges to solve for the method to be useful. This project have been focusing on how to dealwith these challenges and how to manufacture a torque arm with WAAM. This includes the process on how to go from a CAD model to a printed product. Tests have been done during the project parallel with the design of the torque arm. The design have been modied according to the results from the tests. The result of the project was a more specic description how the softwares can be used to optimizethe process for a successful print. The used slicing software, Simplify3D, have some limitations and other options should be considered. Some limitations for the part design have been identied and some known challenges have been solved. The torque arm was successfully printed but with more time and refinement, the added offset could be reduced. The process was time consuming and needs to be more automated in the future. Some proposals on what should be further tested and evaluated is also stated in this report.
5

Réalisation de pièces aéronautiques de grandes dimensions par fabrication additive WAAM / Manufacturing of large scale components for aircraft industry with WAAM process

Querard, Vincent 10 January 2019 (has links)
Dans le domaine de la fabrication additive plusieurs technologies cohabitent et présentent des maturités et des applications différentes : le lit de poudre, la projection de poudre et le dépôt de fil pour ne citer que les principales. Nous avons étudié, dans le cadre de cette thèse, la réalisation de pièces de grandes dimensions du domaine aéronautique en alliage d’aluminium, par technologie WAAM (Wire Arc Additive Manufacturing) robotisée. Cette technologie repose sur l’utilisation un générateur de soudure à l'arc, d’un système de protection gazeuse et d’un système d'alimentation en métal d'apport sous forme de fil. Pour répondre à cette problématique, plusieurs voies de recherche ont été investiguées. La première traitait principalement de la génération de trajectoires : Plusieurs expérimentations ont permis de montrer l’intérêt et l’importance de la génération de trajectoires et notamment la maitrise de l’orientation outil pour la fabrication additive de pièces complexes en étudiant le respect de la géométrie souhaitée. La seconde concernait l’étude de la santé matière des pièces fabriquées. Des observations au niveau de la microstructure, mais aussi des caractéristiques mécaniques ont permis de mettre en évidence l’influence des paramètres opératoires sur la qualité de la matière déposée. Enfin, la réalisation de pièces fonctionnelles dans le cadre d’un projet financé par la DGA/DGAC et dont les partenaires étaient : STELIA, CONSTELLIUM, CT INGENIERIE et l’Ecole Centrale de Nantes, a permis de mettre en avant l’intérêt du procédé pour la fabrication de pièces aéronautiques. Un élément de structure aéronautique composé de raidisseurs a été fabriqué avec le procédé WAAM sur un substrat double courbure en alliage aluminium. Les difficultés accrues de réalisation ont pu être levées par l'emploi de la méthodologie développée dans le cadre de la thèse. / In the field of additive manufacturing (AM), several processes are present and have different applications and levels of development: the main technologies are powder-bed based AM, powder projection and Wire Additive Manufacturing (WAM). We have studied, in this PhD work, the manufacturing of large scale components in aluminum alloy for aircraft industry with Wire Arc Additive Manufacturing (WAAM). This technology is based on a welding generator, a shielding gas protection and a feedstock (wire in this case). To solve this issue, several ways of research were investigated. The first one dealt with toolpath generation: several experiments have highlighted the importance of tool path generation and the tool orientation to manufacture complex parts and improve the part accuracy. The second one was about the validation of the material quality after deposit. Microstructural observations and mechanical tests have demonstrated the effect of process parameters on the deposit quality. Finally, in the context of a DGA/DGAC funded research project, whose partners were STELIA, CT INGENIERIE, CONSTELLIUM and l’Ecole Centrale de Nantes, the manufacturing of functional part in aluminum alloy has shown the interest of the process for aircraft industry. A structural component based on a double curvature geometry has been manufactured with WAAM. The methodologies developed in this PhD work have enabled us to solve the issues to manufacture that type of component.
6

Fatigue and microstructural study of a 316L austenitic stainless steel marine component produced by Wire Arc Additive Manufacturing (WAAM)

Bremler, Oskar January 2022 (has links)
In this study, the fatigue- and fracture properties and microstructure of a marine component of austenitic stainless steel 316L manufactured with the novel method Wire Arc Additive Manufacturing were investigated and compared with data from literature. The purpose was to find a critical flaw size in the material related to its fatigue life. It was done by studying the microstructure and interpreting fatigue- and mechanical data for the marine component in empirical models related to the fatigue- and fracture properties. Fracture properties were approximated to estimate fatigue life and critical flaw size. Fatigue limit and fatigue threshold were based on hardness test data, fracture toughness, and FADs on Charpy-V impact test data. The material manufactured with Wire Arc Additive Manufacturing had superior fatigue properties than cast and rolled equivalents and performed better in the fatigue test than recommendations for austenitic stainless steel in a seawater environment from the British Standard 7910:2019. Due to the conservative model's fatigue limit and fatigue threshold, the results are conservative. The reason for that could be the crack closure properties of the material. The results for fracture toughness are lower than the literature data. This is most likely due to conservative models based on Charpy-V impact test data. The most important properties of the fatigue life are the fatigue limit and the fatigue threshold due to their relationship with crack growth. Testing the lifetime of the component in seawater is complex and time-consuming due to the corrosion and the need for low test frequency.
7

Thermo-Mechanical Modelling of Wire-Arc Additive Manufacturing (WAAM) of Semi-Finished Products

Graf, Marcel, Hälsig, Andre, Höfer, Kevin, Awiszus, Birgit, Mayr, Peter 13 February 2019 (has links)
Additive manufacturing processes have been investigated for some years, and are commonly used industrially in the field of plastics for small- and medium-sized series. The use of metallic deposition material has been intensively studied on the laboratory scale, but the numerical prediction is not yet state of the art. This paper examines numerical approaches for predicting temperature fields, distortions, and mechanical properties using the Finite Element (FE) software MSC Marc. For process mapping, the filler materials G4Si1 (1.5130) for steel, and AZ31 for magnesium, were first characterized in terms of thermo-physical and thermo-mechanical properties with process-relevant cast microstructure. These material parameters are necessary for a detailed thermo-mechanical coupled Finite Element Method (FEM). The focus of the investigations was on the numerical analysis of the influence of the wire feed (2.5–5.0 m/min) and the weld path orientation (unidirectional or continuous) on the temperature evolution for multi-layered walls of miscellaneous materials. For the calibration of the numerical model, the real welding experiments were carried out using the gas-metal arc-welding process—cold metal transfer (CMT) technology. A uniform wall geometry can be produced with a continuous welding path, because a more homogeneous temperature distribution results.

Page generated in 0.0146 seconds